Induced Generalized Connections in Vector Subbundles
We obtain a series of new integral formulae for a distribution of arbitrary codimension (and its orthogonal complement) given on a closed Riemannian manifold, which start from the formula by Walczak (1990) and generalize ones for foliations by several authors. For foliations on space forms our formulae reduce to the classical type formulae by Brito-Langevin-Rosenberg (1981) and Brito-Naveira (2000). The integral formulae involve the conullity tensor of a distribution, and certain components of the...
We present a way of thinking of exponential farnilies as geodesic surfaces in the class of positive functions considered as a (multiplicative) sub-group G+ of the group G of all invertible elements in the algebra A of all complex bounded functions defined on a measurable space. For that we have to study a natural geometry on that algebra. The class D of densities with respect to a given rneasure will happen to be representatives of equivalence classes defining a projective space in A. The natural...
Let X be a differentiable manifold endowed with a transitive action α: A×X→X of a Lie group A. Let K be a Lie group. Under suitable technical assumptions, we give explicit classification theorems, in terms of explicit finite dimensional quotients, of three classes of objects: equivalence classes of α-invariant K-connections on X α-invariant gauge classes of K-connections on X, andα-invariant isomorphism classes of pairs (Q,P) consisting of a holomorphic Kℂ-bundle Q → X and a K-reduction P of Q (when...
We present a generalization of the concept of semiholonomic jets within the framework of higher order prolongations of a fibred manifold. In this respect, a compilation of our 2-fibred manifold approach with the methods of natural operators theory is used.