Page 1

Displaying 1 – 16 of 16

Showing per page

Higher order Cartan connections

Juraj Virsik (1996)

Archivum Mathematicum

A Cartan connection associated with a pair P ( M , G ' ) P ( M , G ) is defined in the usual manner except that only the injectivity of ω : T ( P ' ) T ( G ) e is required. For an r -th order connection associated with a bundle morphism Φ : P ' P the concept of Cartan order q r is defined, which for q = r = 1 , Φ : P ' P , and dim M = dim G / G ' coincides with the classical definition. Results are obtained concerning the Cartan order of r -th order connections that are the product of r first order (Cartan) connections.

Higher order valued reduction theorems for classical connections

Josef Janyška (2005)

Open Mathematics

We generalize reduction theorems for classical connections to operators with values in k-th order natural bundles. Using the 2nd order valued reduction theorems we classify all (0,2)-tensor fields on the cotangent bundle of a manifold with a linear (non-symmetric) connection.

Homogeneous Geodesics in 3-dimensional Homogeneous Affine Manifolds

Zdeněk Dušek, Oldřich Kowalski, Zdeněk Vlášek (2011)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

For studying homogeneous geodesics in Riemannian and pseudo-Riemannian geometry (on reductive homogeneous spaces) there is a simple algebraic formula which works, at least potentially, in every given case. In the affine differential geometry, there is not such a universal formula. In the previous work, we proposed a simple method of investigation of homogeneous geodesics in homogeneous affine manifolds in dimension 2. In the present paper, we use this method on certain classes of homogeneous connections...

Homology and modular classes of Lie algebroids

Janusz Grabowski, Giuseppe Marmo, Peter W. Michor (2006)

Annales de l’institut Fourier

For a Lie algebroid, divergences chosen in a classical way lead to a uniquely defined homology theory. They define also, in a natural way, modular classes of certain Lie algebroid morphisms. This approach, applied for the anchor map, recovers the concept of modular class due to S. Evens, J.-H. Lu, and A. Weinstein.

How Charles Ehresmann's vision of geometry developed with time

Andrée C. Ehresmann (2007)

Banach Center Publications

In the mid fifties, Charles Ehresmann defined Geometry as "the theory of more or less rich structures, in which algebraic and topological structures are generally intertwined". In 1973 he defined it as the theory of differentiable categories, their actions and their prolongations. Here we explain how he progressively formed this conception, from homogeneous spaces to locally homogeneous spaces, to fibre bundles and foliations, to a general notion of local structures, and to a new foundation of differential...

Hyperholomorphic connections on coherent sheaves and stability

Misha Verbitsky (2011)

Open Mathematics

Let M be a hyperkähler manifold, and F a reflexive sheaf on M. Assume that F (away from its singularities) admits a connection ▿ with a curvature Θ which is invariant under the standard SU(2)-action on 2-forms. If Θ is square-integrable, such sheaf is called hyperholomorphic. Hyperholomorphic sheaves were studied at great length in [21]. Such sheaves are stable and their singular sets are hyperkähler subvarieties in M. In the present paper, we study sheaves admitting a connection with SU(2)-invariant...

Currently displaying 1 – 16 of 16

Page 1