Previous Page 2

Displaying 21 – 31 of 31

Showing per page

Remarks on Special Symplectic Connections

Martin Panák, Vojtěch Žádník (2008)

Archivum Mathematicum

The notion of special symplectic connections is closely related to parabolic contact geometries due to the work of M. Cahen and L. Schwachhöfer. We remind their characterization and reinterpret the result in terms of generalized Weyl connections. The aim of this paper is to provide an alternative and more explicit construction of special symplectic connections of three types from the list. This is done by pulling back an ambient linear connection from the total space of a natural scale bundle over...

Riemann maps in almost complex manifolds

Bernard Coupet, Hervé Gaussier, Alexandre Sukhov (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We prove the existence of stationary discs in the ball for small almost complex deformations of the standard structure. We define a local analogue of the Riemann map and establish its main properties. These constructions are applied to study the local geometry of almost complex manifolds and their morphisms.

Riemannian manifolds in which certain curvature operator has constant eigenvalues along each helix

Yana Alexieva, Stefan Ivanov (1999)

Archivum Mathematicum

Riemannian manifolds for which a natural skew-symmetric curvature operator has constant eigenvalues on helices are studied. A local classification in dimension three is given. In the three dimensional case one gets all locally symmetric spaces and all Riemannian manifolds with the constant principal Ricci curvatures r 1 = r 2 = 0 , r 3 0 , which are not locally homogeneous, in general.

Riemannian semisymmetric almost Kenmotsu manifolds and nullity distributions

Yaning Wang, Ximin Liu (2014)

Annales Polonici Mathematici

We consider an almost Kenmotsu manifold M 2 n + 1 with the characteristic vector field ξ belonging to the (k,μ)’-nullity distribution and h’ ≠ 0 and we prove that M 2 n + 1 is locally isometric to the Riemannian product of an (n+1)-dimensional manifold of constant sectional curvature -4 and a flat n-dimensional manifold, provided that M 2 n + 1 is ξ-Riemannian-semisymmetric. Moreover, if M 2 n + 1 is a ξ-Riemannian-semisymmetric almost Kenmotsu manifold such that ξ belongs to the (k,μ)-nullity distribution, we prove that M 2 n + 1 is...

Currently displaying 21 – 31 of 31

Previous Page 2