A local modification to monopole equations in 8-dimension.
We study spin structures on orbifolds. In particular, we show that if the singular set has codimension greater than 2, an orbifold is spin if and only if its smooth part is. On compact orbifolds, we show that any non-trivial twistor spinor admits at most one zero which is singular unless the orbifold is conformally equivalent to a round sphere. We show the sharpness of our results through examples.
We give a new upper bound for the smallest eigenvalues of the Dirac operator on a Riemannian flow carrying transversal Killing spinors. We derive an estimate on both Sasakian and 3-dimensional manifolds, and partially classify those satisfying the limiting case. Finally, we compare our estimate with a lower bound in terms of a natural tensor depending on the eigenspinor.
In this paper we use the explicit description of the Spin– Dirac operator in real dimension appeared in (Homma, Y., The Higher Spin Dirac Operators on –Dimensional Manifolds. Tokyo J. Math. 24 (2001), no. 2, 579–596.) to perform the algebraic analysis of the space of nullsolution of the system of equations given by several Rarita–Schwinger operators. We make use of the general theory provided by (Colombo, F., Sabadini, I., Sommen, F., Struppa, D. C., Analysis of Dirac systems and computational...