Displaying 141 – 160 of 183

Showing per page

Twisted spherical means in annular regions in n and support theorems

Rama Rawat, R.K. Srivastava (2009)

Annales de l’institut Fourier

Let Z ( Ann ( r , R ) ) be the class of all continuous functions f on the annulus Ann ( r , R ) in n with twisted spherical mean f × μ s ( z ) = 0 , whenever z n and s > 0 satisfy the condition that the sphere S s ( z ) Ann ( r , R ) and ball B r ( 0 ) B s ( z ) . In this paper, we give a characterization for functions in Z ( Ann ( r , R ) ) in terms of their spherical harmonic coefficients. We also prove support theorems for the twisted spherical means in n which improve some of the earlier results.

Zonoids with an equatorial characterization

Rafik Aramyan (2016)

Applications of Mathematics

It is known that a local equatorial characterization of zonoids does not exist. The question arises: Is there a subclass of zonoids admitting a local equatorial characterization. In this article a sufficient condition is found for a centrally symmetric convex body to be a zonoid. The condition has a local equatorial description. Using the condition one can define a subclass of zonoids admitting a local equatorial characterization. It is also proved that a convex body whose boundary is an ellipsoid...

Currently displaying 141 – 160 of 183