Displaying 101 – 120 of 149

Showing per page

Stable bundles on hypercomplex surfaces

Ruxandra Moraru, Misha Verbitsky (2010)

Open Mathematics

A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite...

Sui fondamenti dell’ottica relativistica

Giorgio Ferrarese, Rita Antonelli (2002)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Il lavoro deduce, in ambito relativistico, le proprietà fondamentali di un flusso luminoso (congruenza nulla) mediante tecniche anolonome reali [2,3] e precisamente: caratteristiche geometrico-cinematiche del flusso (assolute e relative), teorema di Sachs [6] e proprietà dei nastri luminosi, con particolare riguardo ai parametri ottici e di deformazione, in spazi-tempo particolari (stazionarietà relativa, flussi geodetici, riferimenti trasportati per parallelismo dalla luce).

The graded differential geometry of mixed symmetry tensors

Andrew James Bruce, Eduardo Ibarguengoytia (2019)

Archivum Mathematicum

We show how the theory of 2 n -manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.

Currently displaying 101 – 120 of 149