Rapidities and observable 3-velocities in the flat Finslerian event space with entirely broken 3D isotropy.
A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures that have opposite...
Il lavoro deduce, in ambito relativistico, le proprietà fondamentali di un flusso luminoso (congruenza nulla) mediante tecniche anolonome reali [2,3] e precisamente: caratteristiche geometrico-cinematiche del flusso (assolute e relative), teorema di Sachs [6] e proprietà dei nastri luminosi, con particolare riguardo ai parametri ottici e di deformazione, in spazi-tempo particolari (stazionarietà relativa, flussi geodetici, riferimenti trasportati per parallelismo dalla luce).
We show how the theory of -manifolds - which are a non-trivial generalisation of supermanifolds - may be useful in a geometrical approach to mixed symmetry tensors such as the dual graviton. The geometric aspects of such tensor fields on both flat and curved space-times are discussed.