A Lie algebroid on the Wiener space.
In this note we discuss the geometrical relationship between bi-Hamiltonian systems and bi-differential calculi, introduced by Dimakis and Möller–Hoissen.
We show that the property of having only vanishing triple Massey products in equivariant cohomology is inherited by the set of fixed points of hamiltonian circle actions on closed symplectic manifolds. This result can be considered in a more general context of characterizing homotopic properties of Lie group actions. In particular it can be viewed as a partial answer to a question posed by Allday and Puppe about finding conditions ensuring the "formality" of G-actions.
Some aspects of Duistermaat-Heckman formula in finite dimensions are reviewed. We especulate with some of its possible extensions to infinite dimensions. In particular we review the localization principle and the geometry of loop spaces following Witten and Atiyah?s insight.
The note is about a connection between Seshadri constants and packing constants and presents another proof of Lazarsfeld's result from [Math. Res. Lett. 3 (1996), 439-447].
In this paper we study -recurrence -curvature tensor in-contact metric manifolds.