The search session has expired. Please query the service again.
We completely classify Riemannian -natural metrics of constant sectional curvature on the unit tangent sphere bundle of a Riemannian manifold . Since the base manifold turns out to be necessarily two-dimensional, weaker curvature conditions are also investigated for a Riemannian -natural metric on the unit tangent sphere bundle of a Riemannian surface.
We study gauge transformations of Dirac structures and the relationship between gauge and
Morita equivalences of Poisson manifolds. We describe how the symplectic structure of a
symplectic groupoid is affected by a gauge transformation of the Poisson structure on its
identity section, and prove that gauge-equivalent integrable Poisson structures are
Morita equivalent. As an example, we study certain generic sets of Poisson structures on
Riemann surfaces: we find complete gauge-equivalence invariants...
We consider a continuous curve of linear elliptic formally self-adjoint differential operators of first order with smooth coefficients over a compact Riemannian manifold with boundary together with a continuous curve of global elliptic boundary value problems. We express the spectral flow of the resulting continuous family of (unbounded) self-adjoint Fredholm operators in terms of the Maslov index of two related curves of Lagrangian spaces. One curve is given by the varying domains, the other by...
We discuss a recent necessary and sufficient condition for Melin's inequality for a class of systems of pseudodifferential operators.
The Conley-Zehnder index associates an integer to any continuous path of symplectic matrices starting from the identity and ending at a matrix which does not admit as an eigenvalue. Robbin and Salamon define a generalization of the Conley-Zehnder index for any continuous path of symplectic matrices; this generalization is half integer valued. It is based on a Maslov-type index that they define for a continuous path of Lagrangians in a symplectic vector space , having chosen a given reference...
The aim of this paper is two-fold. First, new generalized Kähler manifolds are constructed starting from both classical almost contact metric and almost Kählerian manifolds. Second, the transformation construction on classical Riemannian manifolds is extended to the generalized geometry setting.
We consider generalized m-quasi-Einstein metric within the framework of Sasakian and K-contact manifolds. First, we prove that a complete Sasakian manifold M admitting a generalized m-quasi-Einstein metric is compact and isometric to the unit sphere . Next, we generalize this to complete K-contact manifolds with m ≠ 1.
The notion of generalized PN manifold is a framework which allows one to get properties of first integrals of the associated bihamiltonian system: conditions of existence of a bi-abelian subalgebra obtained from the momentum map and characterization of such an algebra linked with the problem of separation of variables.
Currently displaying 1 –
20 of
43