Page 1 Next

Displaying 1 – 20 of 29

Showing per page

La trilogie du moment

Patrick Iglesias (1995)

Annales de l'institut Fourier

A toute deux-forme fermée, sur une variété connexe, on associe une famille d’extensions centrales du groupe de ses automorphismes par son tore des périodes. On discute ensuite quelques propriétés de cette construction.

Lagrangian holonomy ; characteristic elements of a lagrangian foliation

Carlos Currás-Bosch, Pierre Molino (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let be a lagrangian foliation on a symplectic manifold ( M 2 n , ω ) . The characteristic elements of such a foliation associated to a lagrangian total transversal are obtained; they are a generalisation of the characteristic elements given by J.J. Duistermaat [5]. This technique is applied to give a classification of the germs of lagrangian foliation along a compact leaf. Several examples of classification are given.

Lagrangians and hamiltonians on affine bundles and higher order geometry

Paul Popescu, Marcela Popescu (2007)

Banach Center Publications

The higher order bundles defined by an anchored bundle are constructed as a natural extension of the higher tangent spaces of a manifold. We prove that a hyperregular lagrangian (hyperregular affine hamiltonian) is a linearizable sub-lagrangian (affine sub-hamiltonian) on a suitable Legendre triple.

Lectures on generalized complex geometry and supersymmetry

Maxim Zabzine (2006)

Archivum Mathematicum

These are the lecture notes from the 26th Winter School “Geometry and Physics", Czech Republic, Srní, January 14 – 21, 2006. These lectures are an introduction into the realm of generalized geometry based on the tangent plus the cotangent bundle. In particular we discuss the relation of this geometry to physics, namely to two-dimensional field theories. We explain in detail the relation between generalized complex geometry and supersymmetry. We briefly review the generalized Kähler and generalized...

Legendrian and transverse twist knots

John B. Etnyre, Lenhard L. Ng, Vera Vértesi (2013)

Journal of the European Mathematical Society

In 1997, Chekanov gave the first example of a Legendrian nonsimple knot type: the m ( 5 2 ) knot. Epstein, Fuchs, and Meyer extended his result by showing that there are at least n different Legendrian representatives with maximal Thurston-Bennequin number of the twist knot K - 2 n with crossing number 2 n + 1 . In this paper we give a complete classification of Legendrian and transverse representatives of twist knots. In particular, we show that K - 2 n has exactly n 2 2 Legendrian representatives with maximal Thurston–Bennequin...

Legendrian graphs and quasipositive diagrams

Sebastian Baader, Masaharu Ishikawa (2009)

Annales de la faculté des sciences de Toulouse Mathématiques

In this paper we clarify the relationship between ribbon surfaces of Legendrian graphs and quasipositive diagrams by using certain fence diagrams. As an application, we give an alternative proof of a theorem concerning a relationship between quasipositive fiber surfaces and contact structures on S 3 . We also answer a question of L. Rudolph concerning moves of quasipositive diagrams.

Length minimizing Hamiltonian paths for symplectically aspherical manifolds

Ely Kerman, François Lalonde (2003)

Annales de l’institut Fourier

In this note we consider the length minimizing properties of Hamiltonian paths generated by quasi-autonomous Hamiltonians on symplectically aspherical manifolds. Motivated by the work of Polterovich and Schwarz, we study the role, in the Floer complex of the generating Hamiltonian, of the global extrema which remain fixed as the time varies. Our main result determines a natural condition which implies that the corresponding path minimizes the positive Hofer length. We use this to prove that a quasi-autonomous Hamiltonian...

Levi-flat filling of real two-spheres in symplectic manifolds (I)

Hervé Gaussier, Alexandre Sukhov (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Let ( M , J , ω ) be a manifold with an almost complex structure J tamed by a symplectic form ω . We suppose that M has the complex dimension two, is Levi-convex and with bounded geometry. We prove that a real two-sphere with two elliptic points, embedded into the boundary of M can be foliated by the boundaries of pseudoholomorphic discs.

Levi-flat filling of real two-spheres in symplectic manifolds (II)

Hervé Gaussier, Alexandre Sukhov (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

We consider a compact almost complex manifold ( M , J , ω ) with smooth Levi convex boundary M and a symplectic tame form ω . Suppose that S 2 is a real two-sphere, containing complex elliptic and hyperbolic points and generically embedded into M . We prove a result on filling S 2 by holomorphic discs.

Lie algebraic characterization of manifolds

Janusz Grabowski, Norbert Poncin (2004)

Open Mathematics

Results on characterization of manifolds in terms of certain Lie algebras growing on them, especially Lie algebras of differential operators, are reviewed and extended. In particular, we prove that a smooth (real-analytic, Stein) manifold is characterized by the corresponding Lie algebra of linear differential operators, i.e. isomorphisms of such Lie algebras are induced by the appropriate class of diffeomorphisms of the underlying manifolds.

Lie-Rinehart algebras, Gerstenhaber algebras and Batalin-Vilkovisky algebras

Johannes Huebschmann (1998)

Annales de l'institut Fourier

For any Lie-Rinehart algebra ( A , L ) , B(atalin)-V(ilkovisky) algebra structures on the exterior A -algebra Λ A L correspond bijectively to right ( A , L ) -module structures on A ; likewise, generators for the Gerstenhaber algebra Λ A L correspond bijectively to right ( A , L ) -connections on A . When L is projective as an A -module, given a B-V algebra structure on Λ A L , the homology of the B-V algebra ( Λ A L , ) coincides with the homology of L with coefficients in A with reference to the right ( A , L ) -module structure determined by . When...

Linear hamiltonian circle actions that generate minimal Hilbert bases

Ágúst Sverrir Egilsson (2000)

Annales de l'institut Fourier

The orbit space of a linear Hamiltonian circle action and the reduced orbit space, at zero, are examples of singular Poisson spaces. The orbit space inherits the Poisson algebra of functions invariant under the linear circle action and the reduced orbit space inherits the Poisson algebra obtained by restricting the invariant functions to the reduced space. Both spaces reside inside smooth manifolds, which in turn inherit almost Poisson structures from the Poisson varieties. In this paper we consider...

Linearization and star products

Veronique Chloup (2000)

Banach Center Publications

The aim of this paper is to give an overview concerning the problem of linearization of Poisson structures, more precisely we give results concerning Poisson-Lie groups and we apply those cohomological techniques to star products.

Linearization of Poisson actions and singular values of matrix products

Anton Alekseev, Eckhard Meinrenken, Chris Woodward (2001)

Annales de l’institut Fourier

We prove that the linearization functor from the category of Hamiltonian K -actions with group-valued moment maps in the sense of Lu, to the category of ordinary Hamiltonian K - actions, preserves products up to symplectic isomorphism. As an application, we give a new proof of the Thompson conjecture on singular values of matrix products and extend this result to the case of real matrices. We give a formula for the Liouville volume of these spaces and obtain from it a hyperbolic version of the Duflo...

Currently displaying 1 – 20 of 29

Page 1 Next