Page 1 Next

Displaying 1 – 20 of 75

Showing per page

A canonical connection on sub-Riemannian contact manifolds

Michael Eastwood, Katharina Neusser (2016)

Archivum Mathematicum

We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case.

A certain tensor on real hypersurfaces in a nonflat complex space form

Kazuhiro Okumura (2020)

Czechoslovak Mathematical Journal

In a nonflat complex space form (namely, a complex projective space or a complex hyperbolic space), real hypersurfaces admit an almost contact metric structure ( φ , ξ , η , g ) induced from the ambient space. As a matter of course, many geometers have investigated real hypersurfaces in a nonflat complex space form from the viewpoint of almost contact metric geometry. On the other hand, it is known that the tensor field h ...

A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups

Eugene Karolinsky (2000)

Banach Center Publications

Let G be a complex reductive connected algebraic group equipped with the Sklyanin bracket. A classification of Poisson homogeneous G-spaces with connected isotropy subgroups is given. This result is based on Drinfeld's correspondence between Poisson homogeneous G-spaces and Lagrangian subalgebras in the double D𝖌 (here 𝖌 = Lie G). A geometric interpretation of some Poisson homogeneous G-spaces is also proposed.

A classification of the torsion tensors on almost contact manifolds with B-metric

Mancho Manev, Miroslava Ivanova (2014)

Open Mathematics

The space of the torsion (0,3)-tensors of the linear connections on almost contact manifolds with B-metric is decomposed in 15 orthogonal and invariant subspaces with respect to the action of the structure group. Three known connections, preserving the structure, are characterized regarding this classification.

A group action on Losev-Manin cohomological field theories

Sergey Shadrin, Dimitri Zvonkine (2011)

Annales de l’institut Fourier

We discuss an analog of the Givental group action for the space of solutions of the commutativity equation. There are equivalent formulations in terms of cohomology classes on the Losev-Manin compactifications of genus  0 moduli spaces; in terms of linear algebra in the space of Laurent series; in terms of differential operators acting on Gromov-Witten potentials; and in terms of multi-component KP tau-functions. The last approach is equivalent to the Losev-Polyubin classification that was obtained...

Currently displaying 1 – 20 of 75

Page 1 Next