A symplectic approach to van den Ban's convexity theorem.
In this paper we show that given any 3-manifold and any non-fibered class in there exists a representation such that the corresponding twisted Alexander polynomial is zero. We obtain this result by extending earlier work of ours and by combining this with recent results of Agol and Wise on separability of 3-manifold groups. This result allows us to completely classify symplectic 4-manifolds with a free circle action, and to determine their symplectic cones.
This article studies the abelian analytic torsion on a closed, oriented, Sasakian three-manifold and identifies this quantity as a specific multiple of the natural unit symplectic volume form on the moduli space of flat abelian connections. This identification computes the analytic torsion explicitly in terms of Seifert data.
We classify the -dimensional compact nilmanifolds that admit abelian complex structures, and for any such complex structure we describe the space of symplectic forms which are compatible with .
We consider volume-preserving perturbations of the time-one map of the geodesic flow of a compact surface with negative curvature. We show that if the Liouville measure has Lebesgue disintegration along the center foliation then the perturbation is itself the time-one map of a smooth volume-preserving flow, and that otherwise the disintegration is necessarily atomic.
Les algèbres différentielles sont apparues comme des outils commodes ou même inévitables pour exprimer les symétries continues, exactes ou brisées, suivant la situation physique envisagée, dans le cadre de l’algorithme de Feynman de la théorie quantique des champs perturbative. Les algèbres de courants, les théories de Yang-Mills, la première quantification de la corde, sont proposées comme exemples classiques.
We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds which are not...
In the present paper we have obtained the necessary condition for the existence of almost pseudo symmetric and almost pseudo Ricci symmetric Sasakian manifold admitting a type of quarter symmetric metric connection.