Grafting Seiberg-Witten monopoles.
Let be a Lagrangian submanifold of for some closed manifold X. Let be a generating function for which is quadratic at infinity, and let W(x) be the corresponding graph selector for in the sense of Chaperon-Sikorav-Viterbo, so that there exists a subset of measure zero such that W is Lipschitz continuous on X, smooth on and for Let H(x,p)=0 for . Then W is a classical solution to on and extends to a Lipschitz function on the whole of X. Viterbo refers to W as a variational...
We consider a mirror symmetry of simple elliptic singularities. In particular, we construct isomorphisms of Frobenius manifolds among the one from the Gromov–Witten theory of a weighted projective line, the one from the theory of primitive forms for a universal unfolding of a simple elliptic singularity and the one from the invariant theory for an elliptic Weyl group. As a consequence, we give a geometric interpretation of the Fourier coefficients of an eta product considered by K. Saito.