Martin's axiom and partitions
We prove that, assuming MA, every crowded space is -resolvable if it satisfies one of the following properties: (1) it contains a -network of cardinality constituted by infinite sets, (2) , (3) is a Baire space and and (4) is a Baire space and has a network with cardinality and such that the collection of the finite elements in it constitutes a -locally finite family. Furthermore, we prove that the existence of a Baire irresolvable space is equivalent to the existence of...
We show that the existence of a non-trivial category base on a set of regular cardinality with each subset being Baire is equiconsistent to the existence of a measurable cardinal.
We construct two examples of a compact, 0-dimensional space which supports a Radon probability measure whose measure algebra is isomorphic to the measure algebra of . The first construction uses ♢ to produce an S-space with no convergent sequences in which every perfect set is a . A space with these properties must be both hereditarily normal and hereditarily countably paracompact. The second space is constructed under CH and is both HS and HL.
A point x is a (bow) tie-point of a space X if X∖x can be partitioned into (relatively) clopen sets each with x in its closure. We denote this as where A, B are the closed sets which have a unique common accumulation point x. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of βℕ = ℕ* (by Veličković and Shelah Steprans) and in the recent study (by Levy and Dow Techanie) of precisely 2-to-1 maps on ℕ*. In these cases the tie-points have been the unique fixed point...
We prove that if ℱ is a non-meager P-filter, then both ℱ and are countable dense homogeneous spaces.
The following statement is proved to be independent from : Let be a Tychonoff space with and . Then a union of less than of nowhere dense subsets of is a union of not greater than of nowhere dense subsets.
We consider the families of all subspaces of size ω₁ of (or of a compact zero-dimensional space X of weight ω₁ in general) which are normal, have the Lindelöf property or are closed under limits of convergent ω₁-sequences. Various relations among these families modulo the club filter in are shown to be consistently possible. One of the main tools is dealing with a subspace of the form X ∩ M for an elementary submodel M of size ω₁. Various results with this flavor are obtained. Another tool used...
A subset of a product of topological spaces is called -thin if every its two distinct points differ in at least coordinates. We generalize a construction of Gruenhage, Natkaniec, and Piotrowski, and obtain, under CH, a countable space without isolated points such that contains an -thin dense subset, but does not contain any -thin dense subset. We also observe that part of the construction can be carried out under MA.
We present a forcing construction of a Hausdorff zero-dimensional Lindelöf space whose square is again Lindelöf but its cube has a closed discrete subspace of size , hence the Lindelöf degree . In our model the Continuum Hypothesis holds true. After that we give a description of a forcing notion to get a space such that for all positive integers , but .