Displaying 181 – 200 of 1389

Showing per page

Caratterizzazione dei Γ -limiti d'ostacoli unilaterali

Placido Longo (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we complete the characterization of those f , μ and ν such that w H 1 ( Ω ) 2 + B f ( x , w ( x ) ) d μ + ν ( B ) is Γ ( L 2 ( Ω ) - ) limit of a sequence of obstacles w H 1 ( Ω ) 2 + Φ h ( w , B ) where Φ h ( w , B ) = { 0 if w φ h a.e. o n B , + otherwise .

Cardinal inequalities implying maximal resolvability

Marek Balcerzak, Tomasz Natkaniec, Małgorzata Terepeta (2005)

Commentationes Mathematicae Universitatis Carolinae

We compare several conditions sufficient for maximal resolvability of topological spaces. We prove that a space X is maximally resolvable provided that for a dense set X 0 X and for each x X 0 the π -character of X at x is not greater than the dispersion character of X . On the other hand, we show that this implication is not reversible even in the class of card-homogeneous spaces.

Cardinal invariants and compactifications

Anatoly A. Gryzlov (1994)

Commentationes Mathematicae Universitatis Carolinae

We prove that every compact space X is a Čech-Stone compactification of a normal subspace of cardinality at most d ( X ) t ( X ) , and some facts about cardinal invariants of compact spaces.

Cardinal invariants of paratopological groups

Iván Sánchez (2013)

Topological Algebra and its Applications

We show that a regular totally ω-narrow paratopological group G has countable index of regularity, i.e., for every neighborhood U of the identity e of G, we can find a neighborhood V of e and a countable family of neighborhoods of e in G such that ∩W∈γ VW−1⊆ U. We prove that every regular (Hausdorff) totally !-narrow paratopological group is completely regular (functionally Hausdorff). We show that the index of regularity of a regular paratopological group is less than or equal to the weak Lindelöf...

Cardinal sequences and Cohen real extensions

István Juhász, Saharon Shelah, Lajos Soukup, Zoltán Szentmiklóssy (2004)

Fundamenta Mathematicae

We show that if we add any number of Cohen reals to the ground model then, in the generic extension, a locally compact scattered space has at most ( 2 ) V levels of size ω. We also give a complete ZFC characterization of the cardinal sequences of regular scattered spaces. Although the classes of regular and of 0-dimensional scattered spaces are different, we prove that they have the same cardinal sequences.

Cardinal sequences of length < ω₂ under GCH

István Juhász, Lajos Soukup, William Weiss (2006)

Fundamenta Mathematicae

Let (α) denote the class of all cardinal sequences of length α associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put λ ( α ) = s ( α ) : s ( 0 ) = λ = m i n [ s ( β ) : β < α ] . We show that f ∈ (α) iff for some natural number n there are infinite cardinals λ i > λ > . . . > λ n - 1 and ordinals α , . . . , α n - 1 such that α = α + + α n - 1 and f = f f . . . f n - 1 where each f i λ i ( α i ) . Under GCH we prove that if α < ω₂ then (i) ω ( α ) = s α ω , ω : s ( 0 ) = ω ; (ii) if λ > cf(λ) = ω, λ ( α ) = s α λ , λ : s ( 0 ) = λ , s - 1 λ i s ω - c l o s e d i n α ; (iii) if cf(λ) = ω₁, λ ( α ) = s α λ , λ : s ( 0 ) = λ , s - 1 λ i s ω - c l o s e d a n d s u c c e s s o r - c l o s e d i n α ; (iv) if cf(λ) > ω₁, λ ( α ) = α λ . This yields a complete characterization of the classes (α) for all α < ω₂,...

Caristi's fixed point theorem and its equivalences in fuzzy metric spaces

Naser Abbasi, Hamid Mottaghi Golshan (2016)

Kybernetika

In this article, we extend Caristi's fixed point theorem, Ekeland's variational principle and Takahashi's maximization theorem to fuzzy metric spaces in the sense of George and Veeramani [A. George , P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Sets and Systems. 64 (1994) 395-399]. Further, a direct simple proof of the equivalences among these theorems is provided.

Categories of directed spaces

Krzysztof Ziemiański (2012)

Fundamenta Mathematicae

The main goal of the present paper is to unify two commonly used models of directed spaces: d-spaces and streams. To achieve this, we provide certain "goodness" conditions for d-spaces and streams. Then we prove that the categories of good d-spaces and good streams are isomorphic. Next, we prove that the category of good d-spaces is complete, cocomplete, and cartesian closed (assuming we restrict to compactly generated weak Hausdorff spaces). The category of good d-spaces is large enough to contain...

Currently displaying 181 – 200 of 1389