Displaying 41 – 60 of 67

Showing per page

Remarks on cardinal inequalities in convergence spaces

Kazushi Yoshitomi (2021)

Mathematica Bohemica

We extend the Noble and Ulmer theorem and the Juhász and Hajnal theorems in set-theoretic topology. We show that a statement analogous to that in the former theorem is valid for a family of almost topological convergences, whereas statements analogous to those in the latter theorems hold for a pretopologically Hausdorff convergence.

Remarks on star covering properties in pseudocompact spaces

Yan-Kui Song (2013)

Mathematica Bohemica

Let P be a topological property. A space X is said to be star P if whenever 𝒰 is an open cover of X , there exists a subspace A X with property P such that X = St ( A , 𝒰 ) , where St ( A , 𝒰 ) = { U 𝒰 : U A } . In this paper, we study the relationships of star P properties for P { Lindel ö f , compact , countablycompact } in pseudocompact spaces by giving some examples.

Remarks on the cardinality of a power homogeneous space

Angelo Bella (2005)

Commentationes Mathematicae Universitatis Carolinae

We provide a further estimate on the cardinality of a power homogeneous space. In particular we show the consistency of the formula | X | 2 π χ ( X ) for any regular power homogeneous ccc space.

Representing free Boolean algebras

Alan Dow, P. Nyikos (1992)

Fundamenta Mathematicae

Partitioner algebras are defined in [2] and are natural tools for studying the properties of maximal almost disjoint families of subsets of ω. In this paper we investigate which free algebras can be represented as partitioner algebras or as subalgebras of partitioner algebras. In so doing we answer a question raised in [2] by showing that the free algebra with 1 generators is represented. It was shown in [2] that it is consistent that the free Boolean algebra of size continuum is not a subalgebra...

Resolvability in c.c.c. generic extensions

Lajos Soukup, Adrienne Stanley (2017)

Commentationes Mathematicae Universitatis Carolinae

Every crowded space X is ω -resolvable in the c.c.c. generic extension V Fn ( | X | , 2 ) of the ground model. We investigate what we can say about λ -resolvability in c.c.c. generic extensions for λ > ω . A topological space is monotonically ω 1 -resolvable if there is a function f : X ω 1 such that { x X : f ( x ) α } d e n s e X for each α < ω 1 . We show that given a T 1 space X the following statements are equivalent: (1) X is ω 1 -resolvable in some c.c.c. generic extension; (2) X is monotonically ω 1 -resolvable; (3) X is ω 1 -resolvable in the Cohen-generic extension V Fn ( ω 1 , 2 ) ....

Currently displaying 41 – 60 of 67