Displaying 41 – 60 of 119

Showing per page

The sizes of relatively compact T 1 -spaces

Winfried Just (1996)

Commentationes Mathematicae Universitatis Carolinae

The relativization of Gryzlov’s theorem about the size of compact T 1 -spaces with countable pseudocharacter is false.

The strongest t-norm for fuzzy metric spaces

Dong Qiu, Weiquan Zhang (2013)

Kybernetika

In this paper, we prove that for a given positive continuous t-norm there is a fuzzy metric space in the sense of George and Veeramani, for which the given t-norm is the strongest one. For the opposite problem, we obtain that there is a fuzzy metric space for which there is no strongest t-norm. As an application of the main results, it is shown that there are infinite non-isometric fuzzy metrics on an infinite set.

The subspace of weak P -points of *

Salvador García-Ferreira, Y. F. Ortiz-Castillo (2015)

Commentationes Mathematicae Universitatis Carolinae

Let W be the subspace of * consisting of all weak P -points. It is not hard to see that W is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that W is a p -pseudocompact space for all p * .

The sup = max problem for the extent and the Lindelöf degree of generalized metric spaces, II

Yasushi Hirata (2015)

Commentationes Mathematicae Universitatis Carolinae

In [The sup = max problem for the extent of generalized metric spaces, Comment. Math. Univ. Carolin. The special issue devoted to Čech 54 (2013), no. 2, 245–257], the author and Yajima discussed the sup = max problem for the extent and the Lindelöf degree of generalized metric spaces: (strict) p -spaces, (strong) Σ -spaces and semi-stratifiable spaces. In this paper, the sup = max problem for the Lindelöf degree of spaces having G δ -diagonals and for the extent of spaces having point-countable bases...

The sup = max problem for the extent of generalized metric spaces

Yasushi Hirata, Yukinobu Yajima (2013)

Commentationes Mathematicae Universitatis Carolinae

It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.

The Suslinian number and other cardinal invariants of continua

T. Banakh, V. V. Fedorchuk, J. Nikiel, M. Tuncali (2010)

Fundamenta Mathematicae

By the Suslinian number Sln(X) of a continuum X we understand the smallest cardinal number κ such that X contains no disjoint family ℂ of non-degenerate subcontinua of size |ℂ| > κ. For a compact space X, Sln(X) is the smallest Suslinian number of a continuum which contains a homeomorphic copy of X. Our principal result asserts that each compact space X has weight ≤ Sln(X)⁺ and is the limit of an inverse well-ordered spectrum of length ≤ Sln(X)⁺, consisting of compacta with weight ≤ Sln(X) and...

The union of two D-spaces need not be D

Dániel T. Soukup, Paul J. Szeptycki (2013)

Fundamenta Mathematicae

We construct from ⋄ a T₂ example of a hereditarily Lindelöf space X that is not a D-space but is the union of two subspaces both of which are D-spaces. This answers a question of Arhangel'skii.

Currently displaying 41 – 60 of 119