Magill-type theorems for mappings.
Let be a Baire space, be a compact Hausdorff space and be a quasi-continuous mapping. For a proximal subset of we will use topological games and on between two players to prove that if the first player has a winning strategy in these games, then is norm continuous on a dense subset of . It follows that if is Valdivia compact, each quasi-continuous mapping from a Baire space to is norm continuous on a dense subset of .
This paper gives a partial solution to a problem of W. Taylor on characterization of the unit interval in the class of all topological spaces by means of the first order properties of their clones. A characterization within the class of compact spaces is obtained.
The concept of almost quasicontinuity is investgated in this paper in several directions (e.g. the relation of this concept to other generalizations of continuity is described, various types of convergence of sequences of almost quasicontinuous function are studied, a.s.o.).
We characterize Peano continua using Bing-Krasinkiewicz-Lelek maps. Also we deal with some topics on Whitney preserving maps.