Ramsey theory for structures: Nešetřil's result on finite metric spaces.
It is shown that the existence of a biseparating map between a large class of spaces of vector-valued continuous functions A(X,E) and A(Y,F) implies that some compactifications of X and Y are homeomorphic. In some cases, conditions are given to warrant the existence of a homeomorphism between the realcompactifications of X and Y; in particular we find remarkable differences with respect to the scalar context: namely, if E and F are infinite-dimensional and T: C*(X,E) → C*(Y,F) is a biseparating...
We introduce and study a new class of locally convex vector lattices of continuous functions on a locally compact Hausdorff space, which we call regular vector lattices. We investigate some general properties of these spaces and of the subspaces of so-called generalized affine functions. Moreover, we present some Korovkin-type theorems for continuous positive linear operators; in particular, we study Korovkin subspaces for finitely defined operators, for the identity operator and for positive...
Let X be a Tikhonov space, C(X) be the space of all continuous real-valued functions defined on X, and CL(X×ℝ) be the hyperspace of all nonempty closed subsets of X×ℝ. We prove the following result: Let X be a locally connected locally compact paracompact space, and let F ∈ CL(X×ℝ). Then F is in the closure of C(X) in CL(X×ℝ) with the Vietoris topology if and only if: (1) for every x ∈ X, F(x) is nonempty; (2) for every x ∈ X, F(x) is connected; (3) for every isolated x ∈ X, F(x) is a singleton...