Ideals of uniformly continuous mappings on pseudometric spaces
Page 1
Jan Pelant, Jiří Vilímovský (1986)
Commentationes Mathematicae Universitatis Carolinae
Raushan Z. Buzyakova (2004)
Commentationes Mathematicae Universitatis Carolinae
It is shown that if is a first-countable countably compact subspace of ordinals then is Lindelöf. This result is used to construct an example of a countably compact space such that the extent of is less than the Lindelöf number of . This example answers negatively Reznichenko’s question whether Baturov’s theorem holds for countably compact spaces.
Pavel Kostyrko (1969)
Matematický časopis
Paul-Jean Cahen, Fulvio Grazzini, Youssef Haouat (1982)
Annales scientifiques de l'Université de Clermont. Mathématiques
Choban, Mitrofan (1998)
Serdica Mathematical Journal
Let a compact Hausdorff space X contain a non-empty perfect subset. If α < β and β is a countable ordinal, then the Banach space Bα (X) of all bounded real-valued functions of Baire class α on X is a proper subspace of the Banach space Bβ (X). In this paper it is shown that: 1. Bα (X) has a representation as C(bα X), where bα X is a compactification of the space P X – the underlying set of X in the Baire topology generated by the Gδ -sets in X. 2. If 1 ≤ α < β ≤ Ω, where Ω is the first...
Paul R. Beesack (1986)
Annales Polonici Mathematici
Page 1