Variations on the Banach-Stone theorem.
For a given space X let C(X) be the family of all compact subsets of X. A space X is dominated by a space M if X has an M-ordered compact cover, this means that there exists a family F = FK : K ∈ C(M) ⊂ C(X) such that ∪ F = X and K ⊂ L implies that FK ⊂ FL for any K;L ∈ C(M). A space X is strongly dominated by a space M if there exists an M-ordered compact cover F such that for any compact K ⊂ X there is F ∈ F such that K ⊂ F . Let K(X) D C(X){Øbe the set of all nonempty compact subsets of a space...