Some characterization of c-paracompact and c-collectionwise normal spaces by continuous selections (II).
In this note we characterize the c-paracompact and c-collectionwise normal spaces in terms of continuous selections. We include the usual techniques with the required modifications by the cardinality.
The following known selection theorem is sharpened, primarily, by weakening the hypothesis that all the sets φ(x) are closed in Y: Let X be paracompact with dimX = 0, let Y be completely metrizable and let φ:X → 𝓕(Y) be l.s.c. Then φ has a selection.
Strongly paracompact metrizable spaces are characterized in terms of special S-maps onto metrizable non-Archimedean spaces. A similar characterization of strongly metrizable spaces is obtained as well. The approach is based on a sieve-construction of "metric"-continuous pseudo-sections of lower semicontinuous mappings.
By introducing the intersection convolution of relations, we prove a natural generalization of an extension theorem of B. Rodrí guez-Salinas and L. Bou on linear selections which is already a substantial generalization of the classical Hahn-Banach theorems. In particular, we give a simple neccesary and sufficient condition in terms of the intersection convolution of a homogeneous relation and its partial linear selections in order that every partial linear selection of this relation can have an...
The probability measure functor P carries open continuous mappings of compact metric spaces into Q-bundles provided Y is countable-dimensional and all fibers are infinite. This answers a question raised by V. Fedorchuk.
The paper deals with the existence of a quasi continuous selection of a multifunction for which upper inverse image of any open set with compact complement contains a set of the form , where is open and , are from a given ideal. The methods are based on the properties of a minimal multifunction which is generated by a cluster process with respect to a system of subsets of the form .
We demonstrate that a second countable space is weakly orderable if and only if it has a continuous weak selection. This provides a partial positive answer to a question of van Mill and Wattel.
We show that if a Hausdorff topological space satisfies one of the following properties: a) has a countable, discrete dense subset and is hereditarily collectionwise Hausdorff; b) has a discrete dense subset and admits a countable base; then the existence of a (continuous) weak selection on implies weak orderability. As a special case of either item a) or b), we obtain the result for every separable metrizable space with a discrete dense subset.
We demonstrate that every Vietoris continuous selection for the hyperspace of at most 3-point subsets implies the existence of a continuous selection for the hyperspace of at most 4-point subsets. However, in general, we do not know if such ``extensions'' are possible for hyperspaces of sets of other cardinalities. In particular, we do not know if the hyperspace of at most 3-point subsets has a continuous selection provided the hyperspace of at most 2-point subsets has a continuous selection.
It is proved that for a zero-dimensional space , the function space has a Vietoris continuous selection for its hyperspace of at most 2-point sets if and only if is separable. This provides the complete affirmative solution to a question posed by Tamariz-Mascarúa. It is also obtained that for a strongly zero-dimensional metrizable space , the function space is weakly orderable if and only if its hyperspace of at most 2-point sets has a Vietoris continuous selection. This provides a partial...