The interior of zero entropy diffeomorphisms.
I present in this note recent results on the uniqueness and stability for the parabolic-parabolic Keller-Segel equation on the plane, obtained in collaboration with S. Mischler in [11].
The topological entropy of a nonautonomous dynamical system given by a sequence of compact metric spaces and a sequence of continuous maps , , is defined. If all the spaces are compact real intervals and all the maps are piecewise monotone then, under some additional assumptions, a formula for the entropy of the system is obtained in terms of the number of pieces of monotonicity of . As an application we construct a large class of smooth triangular maps of the square of type and positive...
Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.