Strict Uniformity in Ergodic Theory.
J. Keesling has shown that for connected spaces the natural inclusion of in its Stone-Čech compactification is a shape equivalence if and only if is pseudocompact. This paper establishes the analogous result for strong shape. Moreover, pseudocompact spaces are characterized as spaces which admit compact resolutions, which improves a result of I. Lončar.
Strongly paracompact metrizable spaces are characterized in terms of special S-maps onto metrizable non-Archimedean spaces. A similar characterization of strongly metrizable spaces is obtained as well. The approach is based on a sieve-construction of "metric"-continuous pseudo-sections of lower semicontinuous mappings.
Let X be a completely regular space and let A(X) be a ring of continuous real-valued functions on X which is closed under local bounded inversion. We show that the structure space of A(X) is homeomorphic to a quotient of the Stone-Čech compactification of X. We use this result to show that any realcompactification of X is homeomorphic to a subspace of the structure space of some ring of continuous functions A(X).
The properties of -factorizable groups and their subgroups are studied. We show that a locally compact group is -factorizable if and only if is -compact. It is proved that a subgroup of an -factorizable group is -factorizable if and only if is -embedded in . Therefore, a subgroup of an -factorizable group need not be -factorizable, and we present a method for constructing non--factorizable dense subgroups of a special class of -factorizable groups. Finally, we construct a closed...
Beaucoup d’informations sur les groupes de cohomologie d’un espace sont obtenues à partir de la suite spectrale de Serre. Dans cet article on construit une suite spectrale de Serre dans le cas “non stable”. Cette suite spectrale “non stable” permet des calculs de groupes d’homotopie d’espaces fonctionnels.