On the existence of -primitives on arbitrary metric spaces
We study set-valued mappings of bounded variation of one real variable. First we prove the existence of an extension of a metric space valued mapping from a subset of the reals to the whole set of reals with preservation of properties of the initial mapping: total variation, Lipschitz constant or absolute continuity. Then we show that a set-valued mapping of bounded variation defined on an arbitrary subset of the reals admits a regular selection of bounded variation. We introduce a notion of generated...
For a topological property P, we say that a space X is star Pif for every open cover Uof the space X there exists Y ⊂ X such that St(Y,U) = X and Y has P. We consider star countable and star Lindelöf spaces establishing, among other things, that there exists first countable pseudocompact spaces which are not star Lindelöf. We also describe some classes of spaces in which star countability is equivalent to countable extent and show that a star countable space with a dense σ-compact subspace can have...
Let and be closed subsets of [0,1] with a subset of the limit points of . Necessary and sufficient conditions are found for the existence of a continuous function such that is an -limit set for and is the set of fixed points of in .
We introduce a functor of order-preserving functionals which contains some known functors as subfunctors. It is shown that this functor is weakly normal and generates a monad.
We prove that for n > 1 the space of proper maps P 0(n, k) and the space of local maps F 0(n, k) are not homotopy equivalent.
For any Borel ideal ℐ we describe the ℐ-Baire system generated by the family of quasi-continuous real-valued functions. We characterize the Borel ideals ℐ for which the ideal and ordinary Baire systems coincide.
The main goal of this paper is to characterize the family of all functions f which satisfy the following condition: whenever g is a Darboux function and f < g on ℝ there is a Darboux function h such that f < h < g on ℝ.
We study the geometrical properties of a unit vector field on a Riemannian 2-manifold, considering the field as a local imbedding of the manifold into its tangent sphere bundle with the Sasaki metric. For the case of constant curvature , we give a description of the totally geodesic unit vector fields for and and prove a non-existence result for . We also found a family of vector fields on the hyperbolic 2-plane of curvature which generate foliations on with leaves of constant intrinsic...