Displaying 21 – 40 of 94

Showing per page

Maximal pseudocompact spaces

Jack R. Porter, Robert M., Jr. Stephenson, Grant R. Woods (1994)

Commentationes Mathematicae Universitatis Carolinae

Maximal pseudocompact spaces (i.e. pseudocompact spaces possessing no strictly stronger pseudocompact topology) are characterized. It is shown that submaximal pseudocompact spaces whose pseudocompact subspaces are closed need not be maximal pseudocompact. Various techniques for constructing maximal pseudocompact spaces are described. Maximal pseudocompactness is compared to maximal feeble compactness.

Mazur spaces.

Wilansky, Albert (1981)

International Journal of Mathematics and Mathematical Sciences

Mazur-like topological linear spaces and their products

Miroslav Hušek (1997)

Commentationes Mathematicae Universitatis Carolinae

Topological linear spaces having the property that some sequentially continuous linear maps on them are continuous, are investigated. It is shown that such properties (and close ones, e.g., bornological-like properties) are closed under large products.

Mesocompactness and selection theory

Peng-fei Yan, Zhongqiang Yang (2012)

Commentationes Mathematicae Universitatis Carolinae

A topological space X is called mesocompact (sequentially mesocompact) if for every open cover 𝒰 of X , there exists an open refinement 𝒱 of 𝒰 such that { V 𝒱 : V K } is finite for every compact set (converging sequence including its limit point) K in X . In this paper, we give some characterizations of mesocompact (sequentially mesocompact) spaces using selection theory.

Currently displaying 21 – 40 of 94