Displaying 41 – 60 of 94

Showing per page

Metrizable completely distributive lattices

Zhang De-Xue (1997)

Commentationes Mathematicae Universitatis Carolinae

The purpose of this paper is to study the topological properties of the interval topology on a completely distributive lattice. The main result is that a metrizable completely distributive lattice is an ANR if and only if it contains at most finite completely compact elements.

Metrization of function spaces with the Fell topology

Hanbiao Yang (2012)

Commentationes Mathematicae Universitatis Carolinae

For a Tychonoff space X , let C F ( X ) be the family of hypographs of all continuous maps from X to [ 0 , 1 ] endowed with the Fell topology. It is proved that X has a dense separable metrizable locally compact open subset if C F ( X ) is metrizable. Moreover, for a first-countable space X , C F ( X ) is metrizable if and only if X itself is a locally compact separable metrizable space. There exists a Tychonoff space X such that C F ( X ) is metrizable but X is not first-countable.

Michael's theorem for Lipschitz cells in o-minimal structures

Małgorzata Czapla, Wiesław Pawłucki (2016)

Annales Polonici Mathematici

A version of Michael's theorem for multivalued mappings definable in o-minimal structures with M-Lipschitz cell values (M a common constant) is proven. Uniform equi-LCⁿ property for such families of cells is checked. An example is given showing that the assumption about the common Lipschitz constant cannot be omitted.

Minimal bi-Lipschitz embedding dimension of ultrametric spaces

Jouni Luukkainen, Hossein Movahedi-Lankarani (1994)

Fundamenta Mathematicae

We prove that an ultrametric space can be bi-Lipschitz embedded in n if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.

Minimal self-joinings and positive topological entropy II

François Blanchard, Jan Kwiatkowski (1998)

Studia Mathematica

An effective construction of positive-entropy almost one-to-one topological extensions of the Chacón flow is given. These extensions have the property of almost minimal power joinings. For each possible value of entropy there are uncountably many pairwise non-conjugate such extensions.

Modifications of the double arrow space and related Banach spaces C(K)

Witold Marciszewski (2008)

Studia Mathematica

We consider the class of compact spaces K A which are modifications of the well known double arrow space. The space K A is obtained from a closed subset K of the unit interval [0,1] by “splitting” points from a subset A ⊂ K. The class of all such spaces coincides with the class of separable linearly ordered compact spaces. We prove some results on the topological classification of K A spaces and on the isomorphic classification of the Banach spaces C ( K A ) .

Currently displaying 41 – 60 of 94