Displaying 21 – 40 of 48

Showing per page

Nonlinear contractive conditions: A comparison and related problems

Jacek Jachymski, Izabela Jóźwik (2007)

Banach Center Publications

We establish five theorems giving lists of nonlinear contractive conditions which turn out to be mutually equivalent. We derive them from some general lemmas concerning subsets of the plane which may be applied both in the single- or set-valued case as well as for a family of mappings. A separation theorem for concave functions is proved as an auxiliary result. Also, we discuss briefly the following problems for several classes of contractions: stability of procedure of successive approximations,...

Norm continuity of pointwise quasi-continuous mappings

Alireza Kamel Mirmostafaee (2018)

Mathematica Bohemica

Let X be a Baire space, Y be a compact Hausdorff space and ϕ : X C p ( Y ) be a quasi-continuous mapping. For a proximal subset H of Y × Y we will use topological games 𝒢 1 ( H ) and 𝒢 2 ( H ) on Y × Y between two players to prove that if the first player has a winning strategy in these games, then ϕ is norm continuous on a dense G δ subset of X . It follows that if Y is Valdivia compact, each quasi-continuous mapping from a Baire space X to C p ( Y ) is norm continuous on a dense G δ subset of X .

Norm continuity of weakly quasi-continuous mappings

Alireza Kamel Mirmostafaee (2011)

Colloquium Mathematicae

Let be the class of Banach spaces X for which every weakly quasi-continuous mapping f: A → X defined on an α-favorable space A is norm continuous at the points of a dense G δ subset of A. We will show that this class is stable under c₀-sums and p -sums of Banach spaces for 1 ≤ p < ∞.

Normal integrands and related classes of functions

Anna Kucia, Andrzej Nowak (1995)

Commentationes Mathematicae Universitatis Carolinae

Let D T × X , where T is a measurable space, and X a topological space. We study inclusions between three classes of extended real-valued functions on D which are upper semicontinuous in x and satisfy some measurability conditions.

Note on bi-Lipschitz embeddings into normed spaces

Jiří Matoušek (1992)

Commentationes Mathematicae Universitatis Carolinae

Let ( X , d ) , ( Y , ρ ) be metric spaces and f : X Y an injective mapping. We put f Lip = sup { ρ ( f ( x ) , f ( y ) ) / d ( x , y ) ; x , y X , x y } , and dist ( f ) = f Lip . f - 1 Lip (the distortion of the mapping f ). We investigate the minimum dimension N such that every n -point metric space can be embedded into the space N with a prescribed distortion D . We obtain that this is possible for N C ( log n ) 2 n 3 / D , where C is a suitable absolute constant. This improves a result of Johnson, Lindenstrauss and Schechtman [JLS87] (with a simpler proof). Related results for embeddability into p N are obtained by a similar method.

Note on dense covers in the category of locales

Jan Paseka (1994)

Commentationes Mathematicae Universitatis Carolinae

In this note we are going to study dense covers in the category of locales. We shall show that any product of finitely regular locales with some dense covering property has this property as well.

Currently displaying 21 – 40 of 48