Displaying 21 – 40 of 172

Showing per page

The Complex Stone-Weierstrass Property

Kenneth Kunen (2004)

Fundamenta Mathematicae

The compact Hausdorff space X has the CSWP iff every subalgebra of C(X,ℂ) which separates points and contains the constant functions is dense in C(X,ℂ). Results of W. Rudin (1956) and Hoffman and Singer (1960) show that all scattered X have the CSWP and many non-scattered X fail the CSWP, but it was left open whether having the CSWP is just equivalent to being scattered. Here, we prove some general facts about the CSWP; in particular we show that if X is a compact ordered space,...

The concept of boundedness and the Bohr compactification of a MAP Abelian group

Jorge Galindo, Salvador Hernández (1999)

Fundamenta Mathematicae

Let G be a maximally almost periodic (MAP) Abelian group and let ℬ be a boundedness on G in the sense of Vilenkin. We study the relations between ℬ and the Bohr topology of G for some well known groups with boundedness (G,ℬ). As an application, we prove that the Bohr topology of a topological group which is topologically isomorphic to the direct product of a locally convex space and an -group, contains “many” discrete C-embedded subsets which are C*-embedded in their Bohr compactification. This...

The controlled separable projection property for Banach spaces

Jesús Ferrer, Marek Wójtowicz (2011)

Open Mathematics

Let X, Y be two Banach spaces. We say that Y is a quasi-quotient of X if there is a continuous operator R: X → Y such that its range, R(X), is dense in Y. Let X be a nonseparable Banach space, and let U, W be closed subspaces of X and Y, respectively. We prove that if X has the Controlled Separable Projection Property (CSPP) (this is a weaker notion than the WCG property) and Y is a quasi-quotient of X, then the structure of Y resembles the structure of a separable Banach space: (a) Y/W is norm-separable...

The convergence space of minimal usco mappings

R. Anguelov, O. F. K. Kalenda (2009)

Czechoslovak Mathematical Journal

A convergence structure generalizing the order convergence structure on the set of Hausdorff continuous interval functions is defined on the set of minimal usco maps. The properties of the obtained convergence space are investigated and essential links with the pointwise convergence and the order convergence are revealed. The convergence structure can be extended to a uniform convergence structure so that the convergence space is complete. The important issue of the denseness of the subset of all...

The dual form of Knaster-Kuratowski-Mazurkiewicz principle in hyperconvex metric spaces and some applications

George Isac, George Xian-Zhi Yuan (1999)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

In this paper, we first establish the dual form of Knaster- Kuratowski-Mazurkiewicz principle which is a hyperconvex version of corresponding result due to Shih. Then Ky Fan type matching theorems for finitely closed and open covers are given. As applications, we establish some intersection theorems which are hyperconvex versions of corresponding results due to Alexandroff and Pasynkoff, Fan, Klee, Horvath and Lassonde. Then Ky Fan type best approximation theorem and Schauder-Tychonoff fixed point...

The Dugundji extension property can fail in ωµ -metrizable spaces

Ian Stares, Jerry Vaughan (1996)

Fundamenta Mathematicae

We show that there exist ω μ -metrizable spaces which do not have the Dugundji extension property ( 2 ω 1 with the countable box topology is such a space). This answers a question posed by the second author in 1972, and shows that certain results of van Douwen and Borges are false.

Currently displaying 21 – 40 of 172