Previous Page 2

Displaying 21 – 33 of 33

Showing per page

Weakly continuous functions of Baire class 1.

T. S. S. R. K. Rao (2000)

Extracta Mathematicae

For a compact Hausdorff space K and a Banach space X, let WC(K,X) denote the space of X-valued functions defined on K, that are continuous when X has the weak topology. In this note by a simple Banach space theoretic argument, we show that given f belonging to WC(K,X) there exists a net {fa} contained in C(K,X) (space of norm continuous functions) such that fa --> f pointwise w.r.t. the norm topology on X. Such a function f is said to be of Baire class 1.

Weakly fuzzy topological entropy

B M Uzzal Afsan (2022)

Mathematica Bohemica

In 2005, İ. Tok fuzzified the notion of the topological entropy R. A. Adler et al. (1965) using the notion of fuzzy compactness of C. L. Chang (1968). In the present paper, we have proposed a new definition of the fuzzy topological entropy of fuzzy continuous mapping, namely weakly fuzzy topological entropy based on the notion of weak fuzzy compactness due to R. Lowen (1976) along with its several properties. We have shown that the topological entropy R. A. Adler et al. (1965) of continuous mapping...

When C p ( X ) is domain representable

William Fleissner, Lynne Yengulalp (2013)

Fundamenta Mathematicae

Let M be a metrizable group. Let G be a dense subgroup of M X . We prove that if G is domain representable, then G = M X . The following corollaries answer open questions. If X is completely regular and C p ( X ) is domain representable, then X is discrete. If X is zero-dimensional, T₂, and C p ( X , ) is subcompact, then X is discrete.

Which topological spaces have a weak reflection in compact spaces?

Martin Maria Kovár (1995)

Commentationes Mathematicae Universitatis Carolinae

The problem, whether every topological space has a weak compact reflection, was answered by M. Hušek in the negative. Assuming normality, M. Hušek fully characterized the spaces having a weak reflection in compact spaces as the spaces with the finite Wallman remainder. In this paper we prove that the assumption of normality may be omitted. On the other hand, we show that some covering properties kill the weak reflectivity of a noncompact topological space in compact spaces.

Whitney maps-a non-metric case

Janusz Charatonik, Włodzimierz Charatonik (2000)

Colloquium Mathematicae

It is shown that there is no Whitney map on the hyperspace 2 X for non-metrizable Hausdorff compact spaces X. Examples are presented of non-metrizable continua X which admit and ones which do not admit a Whitney map for C(X).

Currently displaying 21 – 33 of 33

Previous Page 2