C-closed functions
The problem whether every topological space has a compactification such that every continuous mapping from into a compact space has a continuous extension from into is answered in the negative. For some spaces such compactifications exist.
We study relations between the cellularity and index of narrowness in topological groups and their -modifications. We show, in particular, that the inequalities and hold for every topological group and every cardinal , where denotes the underlying group endowed with the -modification of the original topology of and is the index of narrowness of the group . Also, we find some bounds for the complexity of continuous real-valued functions on an arbitrary -narrow group understood...
Some kinds of perfect spaces, including paracompact perfectly normal spaces and collectionwise normal perfect spaces, are characterized in terms of continuous selections avoiding supporting sets. A necessary and sufficient condition on a domain space for a selection theorem of E. Michael [Fund. Math. 47 (1959), 173-178] to hold is also obtained.
A topological space is said to be -Lindelöf [1] if every cover of by cozero sets of admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of -Lindelöf spaces.