Displaying 1101 – 1120 of 2509

Showing per page

Michael's theorem for Lipschitz cells in o-minimal structures

Małgorzata Czapla, Wiesław Pawłucki (2016)

Annales Polonici Mathematici

A version of Michael's theorem for multivalued mappings definable in o-minimal structures with M-Lipschitz cell values (M a common constant) is proven. Uniform equi-LCⁿ property for such families of cells is checked. An example is given showing that the assumption about the common Lipschitz constant cannot be omitted.

Minimal bi-Lipschitz embedding dimension of ultrametric spaces

Jouni Luukkainen, Hossein Movahedi-Lankarani (1994)

Fundamenta Mathematicae

We prove that an ultrametric space can be bi-Lipschitz embedded in n if its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits of certain inverse sequences of discrete spaces.

Minimal self-joinings and positive topological entropy II

François Blanchard, Jan Kwiatkowski (1998)

Studia Mathematica

An effective construction of positive-entropy almost one-to-one topological extensions of the Chacón flow is given. These extensions have the property of almost minimal power joinings. For each possible value of entropy there are uncountably many pairwise non-conjugate such extensions.

Modifications of the double arrow space and related Banach spaces C(K)

Witold Marciszewski (2008)

Studia Mathematica

We consider the class of compact spaces K A which are modifications of the well known double arrow space. The space K A is obtained from a closed subset K of the unit interval [0,1] by “splitting” points from a subset A ⊂ K. The class of all such spaces coincides with the class of separable linearly ordered compact spaces. We prove some results on the topological classification of K A spaces and on the isomorphic classification of the Banach spaces C ( K A ) .

Monotone extenders for bounded c-valued functions

Kaori Yamazaki (2010)

Studia Mathematica

Let c be the Banach space consisting of all convergent sequences of reals with the sup-norm, C ( A , c ) the set of all bounded continuous functions f: A → c, and C A ( X , c ) the set of all functions f: X → c which are continuous at each point of A ⊂ X. We show that a Tikhonov subspace A of a topological space X is strong Choquet in X if there exists a monotone extender u : C ( A , c ) C A ( X , c ) . This shows that the monotone extension property for bounded c-valued functions can fail in GO-spaces, which provides a negative answer to a question...

Monotone homogeneity of dendrites

Janusz Jerzy Charatonik, Włodzimierz J. Charatonik (1997)

Commentationes Mathematicae Universitatis Carolinae

Sufficient as well as necessary conditions are studied for a dendrite or a dendroid to be homogeneous with respect to monotone mappings. The obtained results extend ones due to H. Kato and the first named author. A number of open problems are asked.

Monotone normality and extension of functions

Ian Stares (1995)

Commentationes Mathematicae Universitatis Carolinae

We provide a characterisation of monotone normality with an analogue of the Tietze-Urysohn theorem for monotonically normal spaces as well as answer a question due to San-ou concerning the extension of Urysohn functions in monotonically normal spaces. We also extend a result of van Douwen, giving a characterisation of K 0 -spaces in terms of semi-continuous functions, as well as answer another question of San-ou concerning semi-continuous Urysohn functions.

Monotone retractions and depth of continua

Janusz Jerzy Charatonik, Panayotis Spyrou (1994)

Archivum Mathematicum

It is shown that for every two countable ordinals α and β with α > β there exist λ -dendroids X and Y whose depths are α and β respectively, and a monotone retraction from X onto Y . Moreover, the continua X and Y can be either both arclike or both fans.

Currently displaying 1101 – 1120 of 2509