Displaying 101 – 120 of 2505

Showing per page

A non-archimedean Dugundji extension theorem

Jerzy Kąkol, Albert Kubzdela, Wiesƚaw Śliwa (2013)

Czechoslovak Mathematical Journal

We prove a non-archimedean Dugundji extension theorem for the spaces C * ( X , 𝕂 ) of continuous bounded functions on an ultranormal space X with values in a non-archimedean non-trivially valued complete field 𝕂 . Assuming that 𝕂 is discretely valued and Y is a closed subspace of X we show that there exists an isometric linear extender T : C * ( Y , 𝕂 ) C * ( X , 𝕂 ) if X is collectionwise normal or Y is Lindelöf or 𝕂 is separable. We provide also a self contained proof of the known fact that any metrizable compact subspace Y of an ultraregular...

A note on condensations of C p ( X ) onto compacta

Aleksander V. Arhangel'skii, Oleg I. Pavlov (2002)

Commentationes Mathematicae Universitatis Carolinae

A condensation is a one-to-one continuous mapping onto. It is shown that the space C p ( X ) of real-valued continuous functions on X in the topology of pointwise convergence very often cannot be condensed onto a compact Hausdorff space. In particular, this is so for any non-metrizable Eberlein compactum X (Theorem 19). However, there exists a non-metrizable compactum X such that C p ( X ) condenses onto a metrizable compactum (Theorem 10). Several curious open problems are formulated.

A note on g -metrizable spaces

Jinjin Li (2003)

Czechoslovak Mathematical Journal

In this paper, the relationships between metric spaces and g -metrizable spaces are established in terms of certain quotient mappings, which is an answer to Alexandroff’s problems.

A note on inverse limits of continuous images of arcs.

Ivan Loncar (1999)

Publicacions Matemàtiques

The main purpose of this paper is to prove some theorems concerning inverse systems and limits of continuous images of arcs. In particular, we shall prove that if X = {Xa, pab, A} is an inverse system of continuous images of arcs with monotone bonding mappings such that cf (card (A)) ≠ w1, then X = lim X is a continuous image of an arc if and only if each proper subsystem {Xa, pab, B} of X with cf(card (B)) = w1 has the limit which is a continuous image of an arc (Theorem 18).

A note on linear mappings between function spaces

Jan Baars (1993)

Commentationes Mathematicae Universitatis Carolinae

Arhangel’skiǐ proved that if X and Y are completely regular spaces such that C p ( X ) and C p ( Y ) are linearly homeomorphic, then X is pseudocompact if and only if Y is pseudocompact. In addition he proved the same result for compactness, σ -compactness and realcompactness. In this paper we prove that if φ : C p ( X ) C p ( X ) is a continuous linear surjection, then Y is pseudocompact provided X is and if φ is a continuous linear injection, then X is pseudocompact provided Y is. We also give examples that both statements do not hold...

Currently displaying 101 – 120 of 2505