Displaying 101 – 120 of 172

Showing per page

The topology of the Banach–Mazur compactum

Sergey Antonyan (2000)

Fundamenta Mathematicae

Let J(n) be the hyperspace of all centrally symmetric compact convex bodies A n , n ≥ 2, for which the ordinary Euclidean unit ball is the ellipsoid of maximal volume contained in A (the John ellipsoid). Let J 0 ( n ) be the complement of the unique O(n)-fixed point in J(n). We prove that: (1) the Banach-Mazur compactum BM(n) is homeomorphic to the orbit space J(n)/O(n) of the natural action of the orthogonal group O(n) on J(n); (2) J(n) is an O(n)-AR; (3) J 0 ( 2 ) / S O ( 2 ) is an Eilenberg-MacLane space 𝐊 ( , 2 ) ; (4) B M 0 ( 2 ) = J 0 ( 2 ) / O ( 2 ) is noncontractible;...

The σ -property in C ( X )

Anthony W. Hager (2016)

Commentationes Mathematicae Universitatis Carolinae

The σ -property of a Riesz space (real vector lattice) B is: For each sequence { b n } of positive elements of B , there is a sequence { λ n } of positive reals, and b B , with λ n b n b for each n . This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “ σ ” obtains for a Riesz space of continuous real-valued functions C ( X ) . A basic result is: For discrete X , C ( X ) has σ iff the cardinal | X | < 𝔟 , Rothberger’s bounding number. Consequences and...

Tightness and resolvability

Angelo Bella, Viacheslav I. Malykhin (1998)

Commentationes Mathematicae Universitatis Carolinae

We prove resolvability and maximal resolvability of topological spaces having countable tightness with some additional properties. For this purpose, we introduce some new versions of countable tightness. We also construct a couple of examples of irresolvable spaces.

Tightness and π-character in centered spaces

Murray Bell (1999)

Colloquium Mathematicae

We continue an investigation into centered spaces, a generalization of dyadic spaces. The presence of large Cantor cubes in centered spaces is deduced from tightness considerations. It follows that for centered spaces X, πχ(X) = t(X), and if X has uncountable tightness, then t(X) = supκ : 2 κ ⊂ X. The relationships between 9 popular cardinal functions for the class of centered spaces are justified. An example is constructed which shows, unlike the dyadic and polyadic properties, that the centered...

Tightness of compact spaces is preserved by the t -equivalence relation

Oleg Okunev (2002)

Commentationes Mathematicae Universitatis Carolinae

We prove that if there is an open mapping from a subspace of C p ( X ) onto C p ( Y ) , then Y is a countable union of images of closed subspaces of finite powers of X under finite-valued upper semicontinuous mappings. This allows, in particular, to prove that if X and Y are t -equivalent compact spaces, then X and Y have the same tightness, and that, assuming 2 𝔱 > 𝔠 , if X and Y are t -equivalent compact spaces and X is sequential, then Y is sequential.

Currently displaying 101 – 120 of 172