Displaying 121 – 140 of 172

Showing per page

Topological calculus for separating points from closed sets by maps

Javier Gutiérrez García, Tomasz Kubiak (2012)

Czechoslovak Mathematical Journal

Pointfree formulas for three kinds of separating points for closed sets by maps are given. These formulas allow controlling the amount of factors of the target product space so that it does not exceed the weight of the embeddable space. In literature, the question of how many factors of the target product are needed for the embedding has only been considered for specific spaces. Our approach is algebraic in character and can thus be viewed as a contribution to Kuratowski's topological calculus.

Topological compactifications

Benjamin Vejnar (2011)

Fundamenta Mathematicae

We study those compactifications of a space such that every autohomeomorphism of the space can be continuously extended over the compactification. These are called H-compactifications. Van Douwen proved that there are exactly three H-compactifications of the real line. We prove that there exist only two H-compactifications of Euclidean spaces of higher dimension. Next we show that there are 26 H-compactifications of a countable sum of real lines and 11 H-compactifications of a countable sum of Euclidean...

Topological entropy of nonautonomous piecewise monotone dynamical systems on the interval

Sergiĭ Kolyada, Michał Misiurewicz, L’ubomír Snoha (1999)

Fundamenta Mathematicae

The topological entropy of a nonautonomous dynamical system given by a sequence of compact metric spaces ( X i ) i = 1 and a sequence of continuous maps ( f i ) i = 1 , f i : X i X i + 1 , is defined. If all the spaces are compact real intervals and all the maps are piecewise monotone then, under some additional assumptions, a formula for the entropy of the system is obtained in terms of the number of pieces of monotonicity of f n . . . f 2 f 1 . As an application we construct a large class of smooth triangular maps of the square of type 2 and positive...

Topological entropy on zero-dimensional spaces

Jozef Bobok, Ondřej Zindulka (1999)

Fundamenta Mathematicae

Let X be an uncountable compact metrizable space of topological dimension zero. Given any a ∈[0,∞] there is a homeomorphism on X whose topological entropy is a.

Topological groups and convex sets homeomorphic to non-separable Hilbert spaces

Taras Banakh, Igor Zarichnyy (2008)

Open Mathematics

Let X be a topological group or a convex set in a linear metric space. We prove that X is homeomorphic to (a manifold modeled on) an infinite-dimensional Hilbert space if and only if X is a completely metrizable absolute (neighborhood) retract with ω-LFAP, the countable locally finite approximation property. The latter means that for any open cover 𝒰 of X there is a sequence of maps (f n: X → X)nεgw such that each f n is 𝒰 -near to the identity map of X and the family f n(X)n∈ω is locally finite...

Topological groups with Rokhlin properties

Eli Glasner, Benjamin Weiss (2008)

Colloquium Mathematicae

In his classical paper [Ann. of Math. 45 (1944)] P. R. Halmos shows that weak mixing is generic in the measure preserving transformations. Later, in his book, Lectures on Ergodic Theory, he gave a more streamlined proof of this fact based on a fundamental lemma due to V. A. Rokhlin. For this reason the name of Rokhlin has been attached to a variety of results, old and new, relating to the density of conjugacy classes in topological groups. In this paper we will survey some of the new developments...

Topological structure of the space of lower semi-continuous functions

Katsuro Sakai, Shigenori Uehara (2006)

Commentationes Mathematicae Universitatis Carolinae

Let L ( X ) be the space of all lower semi-continuous extended real-valued functions on a Hausdorff space X , where, by identifying each f with the epi-graph epi ( f ) , L ( X ) is regarded the subspace of the space Cld F * ( X × ) of all closed sets in X × with the Fell topology. Let LSC ( X ) = { f L ( X ) f ( X ) , f ( X ) ( - , ] } and LSC B ( X ) = { f L ( X ) f ( X ) is a bounded subset of } . We show that L ( X ) is homeomorphic to the Hilbert cube Q = [ - 1 , 1 ] if and only if X is second countable, locally compact and infinite. In this case, it is proved that ( L ( X ) , LSC ( X ) , LSC B ( X ) ) is homeomorphic to ( Cone Q , Q × ( 0 , 1 ) , Σ × ( 0 , 1 ) ) (resp. ( Q , s , Σ ) ) if X is compact (resp. X is non-compact), where Cone Q = ( Q × 𝐈 ) / ( Q × { 1 } ) is the cone over...

Currently displaying 121 – 140 of 172