On decompositions of continua
We prove that it is independent of ZFC whether every Hausdorff countable space of weight less than has a dense regular subspace. Examples are given of countable Hausdorff spaces of weight which do not have dense Urysohn subspaces. We also construct an example of a countable Urysohn space, which has no dense completely Hausdorff subspace. On the other hand, we establish that every Hausdorff space of -weight less than has a dense completely Hausdorff (and hence Urysohn) subspace. We show that...
Let f: X → Y be a closed n-dimensional surjective map of metrizable spaces. It is shown that if Y is a C-space, then: (1) the set of all maps g: X → ⁿ with dim(f △ g) = 0 is uniformly dense in C(X,ⁿ); (2) for every 0 ≤ k ≤ n-1 there exists an -subset of X such that and the restriction is (n-k-1)-dimensional. These are extensions of theorems by Pasynkov and Toruńczyk, respectively, obtained for finite-dimensional spaces. A generalization of a result due to Dranishnikov and Uspenskij about...
We prove that, for every finite-dimensional metrizable space, there exists a compactification that is Eberlein compact and preserves both the covering dimension and weight.
A.V. Arkhangel’skii asked that, is it true that every space of countable tightness is homeomorphic to a subspace (to a closed subspace) of where is Lindelöf? denotes the space of all continuous real-valued functions on a space with the topology of pointwise convergence. In this note we show that the two arrows space is a counterexample for the problem by showing that every separable compact linearly ordered topological space is second countable if it is homeomorphic to a subspace of ...
Defining the complexity of a green pattern exhibited by an interval map, we give the best bounds of the topological entropy of a pattern with a given complexity. Moreover, we show that the topological entropy attains its strict minimum on the set of patterns with fixed eccentricity m/n at a unimodal X-minimal case. Using a different method, the last result was independently proved in[11].
We study the connection between the entropy of a dynamical system and the boundary distortion rate of regions in the phase space of the system.