A note on topological m-spaces
In this paper we introduce a new class of functions called weakly -closed functions with the help of generalized topology which was introduced by Á. Császár. Several characterizations and some basic properties of such functions are obtained. The connections between these functions and some other similar types of functions are given. Finally some comparisons between different weakly closed functions are discussed. This weakly -closed functions enable us to facilitate the formulation of certain...
In this paper, a simple proof is given for the following theorem due to Blair [7], Blair-Hager [8] and Hager-Johnson [12]: A Tychonoff space is -embedded in every larger Tychonoff space if and only if is almost compact or Lindelöf. We also give a simple proof of a recent theorem of Bella-Yaschenko [6] on absolute embeddings.
Given a topological property (or a class) , the class dual to (with respect to neighbourhood assignments) consists of spaces such that for any neighbourhood assignment there is with and . The spaces from are called dually . We continue the study of this duality which constitutes a development of an idea of E. van Douwen used to define -spaces. We prove a number of results on duals of some general classes of spaces establishing, in particular, that any generalized ordered space...
A polyadic space is a Hausdorff continuous image of some power of the one-point compactification of a discrete space. We prove a Ramsey-like property for polyadic spaces which for Boolean spaces can be stated as follows: every uncountable clopen collection contains an uncountable subcollection which is either linked or disjoint. One corollary is that is not a universal preimage for uniform Eberlein compact spaces of weight at most κ, thus answering a question of Y. Benyamini, M. Rudin and M. Wage....
M. Radulescu proved the following result: Let be a compact Hausdorff topological space and a supra-additive and supra-multiplicative operator. Then is linear and multiplicative. We generalize this result to arbitrary topological spaces.