Displaying 101 – 120 of 477

Showing per page

Countable compactness and p -limits

Salvador García-Ferreira, Artur Hideyuki Tomita (2001)

Commentationes Mathematicae Universitatis Carolinae

For M ω * , we say that X is quasi M -compact, if for every f : ω X there is p M such that f ¯ ( p ) X , where f ¯ is the Stone-Čech extension of f . In this context, a space X is countably compact iff X is quasi ω * -compact. If X is quasi M -compact and M is either finite or countable discrete in ω * , then all powers of X are countably compact. Assuming C H , we give an example of a countable subset M ω * and a quasi M -compact space X whose square is not countably compact, and show that in a model of A. Blass and S. Shelah every quasi...

Countable dense homogeneous filters and the Menger covering property

Dušan Repovš, Lyubomyr Zdomskyy, Shuguo Zhang (2014)

Fundamenta Mathematicae

We present a ZFC construction of a non-meager filter which fails to be countable dense homogeneous. This answers a question of Hernández-Gutiérrez and Hrušák. The method of the proof also allows us to obtain for any n ∈ ω ∪ {∞} an n-dimensional metrizable Baire topological group which is strongly locally homogeneous but not countable dense homogeneous.

Countably z-compact spaces

A.T. Al-Ani (2014)

Archivum Mathematicum

In this work we study countably z-compact spaces and z-Lindelof spaces. Several new properties of them are given. It is proved that every countably z-compact space is pseuodocompact (a space on which every real valued continuous function is bounded). Spaces which are countably z-compact but not countably compact are given. It is proved that a space is countably z-compact iff every countable z-closed set is compact. Characterizations of countably z-compact and z-Lindelof spaces by multifunctions...

Covering properties in countable products, II

Sachio Higuchi, Hidenori Tanaka (2006)

Commentationes Mathematicae Universitatis Carolinae

In this paper, we discuss covering properties in countable products of Čech-scattered spaces and prove the following: (1) If Y is a perfect subparacompact space and { X n : n ω } is a countable collection of subparacompact Čech-scattered spaces, then the product Y × n ω X n is subparacompact and (2) If { X n : n ω } is a countable collection of metacompact Čech-scattered spaces, then the product n ω X n is metacompact.

Descriptive compact spaces and renorming

L. Oncina, M. Raja (2004)

Studia Mathematica

We study the class of descriptive compact spaces, the Banach spaces generated by descriptive compact subsets and their relation to renorming problems.

Currently displaying 101 – 120 of 477