Application on local discrete expansion.
Under some very strong set-theoretic hypotheses, hereditarily normal spaces (also referred to as T₅ spaces) that are locally compact and hereditarily collectionwise Hausdorff can have a highly simplified structure. This paper gives a structure theorem (Theorem 1) that applies to all such ω₁-compact spaces and another (Theorem 4) to all such spaces of Lindelöf number ≤ ℵ₁. It also introduces an axiom (Axiom F) on crowding of functions, with consequences (Theorem 3) for the crowding of countably compact...
We investigate the question of the title. While it is immediate that CH yields a positive answer we discover that the situation under the negation of CH holds some surprises.
A first order structure with universe M is atomic compact if every system of atomic formulas with parameters in M is satisfiable in provided each of its finite subsystems is. We consider atomic compactness for the class of reflexive (symmetric) graphs. In particular, we investigate the extent to which “sparse” graphs (i.e. graphs with “few” vertices of “high” degree) are compact with respect to systems of atomic formulas with “few” unknowns, on the one hand, and are pure restrictions of their...
For a space Z let 𝒦(Z) denote the partially ordered set of all compact subspaces of Z under set inclusion. If X is a compact space, Δ is the diagonal in X², and 𝒦(X²∖Δ) has calibre (ω₁,ω), then X is metrizable. There is a compact space X such that X²∖Δ has relative calibre (ω₁,ω) in 𝒦(X²∖Δ), but which is not metrizable. Questions of Cascales et al. (2011) concerning order constraints on 𝒦(A) for every subspace of a space X are answered.
Let (α) denote the class of all cardinal sequences of length α associated with compact scattered spaces (or equivalently, superatomic Boolean algebras). Also put . We show that f ∈ (α) iff for some natural number n there are infinite cardinals and ordinals such that and where each . Under GCH we prove that if α < ω₂ then (i) ; (ii) if λ > cf(λ) = ω, ; (iii) if cf(λ) = ω₁, ; (iv) if cf(λ) > ω₁, . This yields a complete characterization of the classes (α) for all α < ω₂,...
Realcompact spaces can be characterized as limits of approximate inverse systems of Polish polyhedra.
In some sense, a dual property to that of Valdivia compact is considered, namely the property to be embedded as a closed subspace into a complement of a -subproduct of a Tikhonov cube. All locally compact spaces are co-Valdivia spaces (and only those among metrizable spaces or spaces having countable type). There are paracompact non-locally compact co-Valdivia spaces. A possibly new type of ultrafilters lying in between P-ultrafilters and weak P-ultrafilters is introduced. Under Martin axiom and...
Let us denote by the statement that , i.e. the Baire space of weight , has a coloring with colors such that every homeomorphic copy of the Cantor set in picks up all the colors. We call a space -regular if it is Hausdorff and for every nonempty open set in there is a nonempty open set such that . We recall that a space is called feebly compact if...