A unified theory of weak separation properties.
We introduce a general notion of covering property, of which many classical definitions are particular instances. Notions of closure under various sorts of convergence, or, more generally, under taking kinds of accumulation points, are shown to be equivalent to a covering property in the sense considered here (Corollary 3.10). Conversely, every covering property is equivalent to the existence of appropriate kinds of accumulation points for arbitrary sequences on some fixed index set (Corollary 3.5)....
-normality and -normality are properties generalizing normality of topological spaces. They consist in separating dense subsets of closed disjoint sets. We construct an example of a Tychonoff -normal non-normal space and an example of a Hausdorff -normal non-regular space.
We prove a dichotomy theorem for remainders in compactifications of homogeneous spaces: given a homogeneous space , every remainder of is either realcompact and meager or Baire. In addition we show that two other recent dichotomy theorems for remainders of topological groups due to Arhangel’skii cannot be extended to homogeneous spaces.
We study some generalized metric properties on the hyperspace of finite subsets of a space endowed with the Vietoris topology. We prove that has a point-star network consisting of (countable) -covers if and only if so does . Moreover, has a sequence of -covers with property which is a point-star network if and only if so does , where is one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable. On the other...
In this paper, we generalize Vaughan's and Bonanzinga's results on absolute countable compactness of product spaces and give an example of a separable, countably compact, topological group which is not absolutely countably compact. The example answers questions of Matveev [8, Question 1] and Vaughan [9, Question (1)].
A space X is absolutely strongly star-Hurewicz if for each sequence (Un :n ∈ℕ/ of open covers of X and each dense subset D of X, there exists a sequence (Fn :n ∈ℕ/ of finite subsets of D such that for each x ∈X, x ∈St(Fn; Un) for all but finitely many n. In this paper, we investigate the relationships between absolutely strongly star-Hurewicz spaces and related spaces, and also study topological properties of absolutely strongly star-Hurewicz spaces.
We show that AC is equivalent to the assertion that every compact completely regular topology can be extended to a compact Tychonoff topology.
We prove the addition and subspace theorems for asymptotic large inductive dimension. We investigate a transfinite extension of this dimension and show that it is trivial.