-complétion et -densité
Every lower semi-continuous closed-and-convex valued mapping , where is a -product of metrizable spaces and is a Hilbert space, has a single-valued continuous selection. This improves an earlier result of the author.
We show that any -product of at most -many -spaces has the -property. This result generalizes some known results about -spaces. On the other hand, we prove that every -product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every -product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe...
A subset of a Hausdorff space is called an H-set in if for every open family in such that there exists a countable subfamily of such that . In this paper we introduce a new cardinal function and show that for every H-set of a Hausdorff space .