Inverse limits of simplicial complexes
Some topological properties of inverse limits of sequences with proper bonding maps are studied. We show that (non-empty) limits of euclidean half-lines are one-ended generalized continua. We also prove the non-existence of a universal object for such limits with respect to closed embeddings. A further result states that limits of end-preserving sequences of euclidean lines are two-ended generalized continua.
Let L¹(G)** be the second dual of the group algebra L¹(G) of a locally compact group G. We study the question of involutions on L¹(G)**. A new class of subamenable groups is introduced which is universal for all groups. There is no involution on L¹(G)** for a subamenable group G.
Let be a bounded countable metric space and a constant, such that , for any pairwise distinct points of . For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of .