Contra-continuous functions and strongly -closed spaces.
Let be a compact Hausdorff space with a point such that is linearly Lindelöf. Is then first countable at ? What if this is true for every in ? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is “yes” when is, in addition, -monolithic. We also prove that if is compact, Hausdorff, and is strongly discretely Lindelöf, for every in , then is first countable. An example of linearly Lindelöf...
We discuss here several types of convergence of conditional expectations for unbounded closed convex random sets of the form where is a decreasing sequence of sub-σ-algebras and is a sequence of closed convex random sets in a separable Banach space.
We show that, under CH, the corona of a countable ultrametric space is homeomorphic to . As a corollary, we get the same statements for the Higson’s corona of a proper ultrametric space and the space of ends of a countable locally finite group.
We show that: (1) It is provable in ZF (i.e., Zermelo-Fraenkel set theory minus the Axiom of Choice AC) that every compact scattered T₂ topological space is zero-dimensional. (2) If every countable union of countable sets of reals is countable, then a countable compact T₂ space is scattered iff it is metrizable. (3) If the real line ℝ can be expressed as a well-ordered union of well-orderable sets, then every countable compact zero-dimensional T₂ space...
For , we say that is quasi -compact, if for every there is such that , where is the Stone-Čech extension of . In this context, a space is countably compact iff is quasi -compact. If is quasi -compact and is either finite or countable discrete in , then all powers of are countably compact. Assuming , we give an example of a countable subset and a quasi -compact space whose square is not countably compact, and show that in a model of A. Blass and S. Shelah every quasi...
We present a ZFC construction of a non-meager filter which fails to be countable dense homogeneous. This answers a question of Hernández-Gutiérrez and Hrušák. The method of the proof also allows us to obtain for any n ∈ ω ∪ {∞} an n-dimensional metrizable Baire topological group which is strongly locally homogeneous but not countable dense homogeneous.