Normal subspaces in products of two ordinals
Let λ be an ordinal number. It is shown that normality, collectionwise normality and shrinking are equivalent for all subspaces of .
Previous Page 3
Nobuyuki Kemoto, Tsugunori Nogura, Kerry Smith, Yukinobu Yajima (1996)
Fundamenta Mathematicae
Let λ be an ordinal number. It is shown that normality, collectionwise normality and shrinking are equivalent for all subspaces of .
G. Di Maio, E. Meccariello, Somashekhar Naimpally (2004)
Czechoslovak Mathematical Journal
One of the most celebrated results in the theory of hyperspaces says that if the Vietoris topology on the family of all nonempty closed subsets of a given space is normal, then the space is compact (Ivanova-Keesling-Velichko). The known proofs use cardinality arguments and are long. In this paper we present a short proof using known results concerning Hausdorff uniformities.
Hidenori Tanaka (1986)
Fundamenta Mathematicae
K. Alster, T. Przymusiński (1976)
Fundamenta Mathematicae
Teodor Przymusiński (1980)
Fundamenta Mathematicae
Teodor Przymusiński (1976)
Fundamenta Mathematicae
Teodor Przymusiński (1981)
Fundamenta Mathematicae
Roman Pol (1974)
Fundamenta Mathematicae
Amer Bešlagić, Keiko Chiba (1987)
Fundamenta Mathematicae
Murray G. Bell (1990)
Commentationes Mathematicae Universitatis Carolinae
G.C.L. Brümmer (1971)
Mathematische Annalen
Ondřej F. K. Kalenda (2004)
Commentationes Mathematicae Universitatis Carolinae
We show that a compact space has a dense set of points if it can be covered by countably many Corson countably compact spaces. If these Corson countably compact spaces may be chosen to be dense in , then is even Corson.
Aleš Pultr, Josef Úlehla (1989)
Commentationes Mathematicae Universitatis Carolinae
Hong, Woo Chorl (1999)
International Journal of Mathematics and Mathematical Sciences
A. Pultr, A. Tozzi (1992)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Ai-Jun Xu, Wei-Xue Shi (2009)
Czechoslovak Mathematical Journal
We provide a necessary and sufficient condition under which a generalized ordered topological product (GOTP) of two GO-spaces is monotonically Lindelöf.
Masami Sakai (2016)
Commentationes Mathematicae Universitatis Carolinae
We introduce the notion of a strongly Whyburn space, and show that a space is strongly Whyburn if and only if is Whyburn. We also show that if is Whyburn for any Whyburn space , then is discrete.
Philippe Antoine (1973)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
J. Nikiel, L. Treybig (1996)
Colloquium Mathematicae
Previous Page 3