The minimum uniform compactification of a metric space
It is shown that associated with each metric space (X,d) there is a compactification of X that can be characterized as the smallest compactification of X to which each bounded uniformly continuous real-valued continuous function with domain X can be extended. Other characterizations of are presented, and a detailed study of the structure of is undertaken. This culminates in a topological characterization of the outgrowth , where is Euclidean n-space with its usual metric.