The shrinking property of products of cardinals
The relativization of Gryzlov’s theorem about the size of compact -spaces with countable pseudocharacter is false.
Let be the subspace of consisting of all weak -points. It is not hard to see that is a pseudocompact space. In this paper we shall prove that this space has stronger pseudocompact properties. Indeed, it is shown that is a -pseudocompact space for all .
In [The sup = max problem for the extent of generalized metric spaces, Comment. Math. Univ. Carolin. The special issue devoted to Čech 54 (2013), no. 2, 245–257], the author and Yajima discussed the sup = max problem for the extent and the Lindelöf degree of generalized metric spaces: (strict) -spaces, (strong) -spaces and semi-stratifiable spaces. In this paper, the sup = max problem for the Lindelöf degree of spaces having -diagonals and for the extent of spaces having point-countable bases...
It looks not useful to study the sup = max problem for extent, because there are simple examples refuting the condition. On the other hand, the sup = max problem for Lindelöf degree does not occur at a glance, because Lindelöf degree is usually defined by not supremum but minimum. Nevertheless, in this paper, we discuss the sup = max problem for the extent of generalized metric spaces by combining the sup = max problem for the Lindelöf degree of these spaces.
We construct from ⋄ a T₂ example of a hereditarily Lindelöf space X that is not a D-space but is the union of two subspaces both of which are D-spaces. This answers a question of Arhangel'skii.
This paper is an investigation of the universal separable metric space up to isometry U discovered by Urysohn. A concrete construction of U as a metric subspace of the space C[0,1] of functions from [0,1] to the reals with the supremum metric is given. An answer is given to a question of Sierpiński on isometric embeddings of U in C[0,1]. It is shown that the closed linear span of an isometric copy of U in a Banach space which contains the zero of the Banach space is determined up to linear isometry....
The -property of a Riesz space (real vector lattice) is: For each sequence of positive elements of , there is a sequence of positive reals, and , with for each . This condition is involved in studies in Riesz spaces of abstract Egoroff-type theorems, and of the countable lifting property. Here, we examine when “” obtains for a Riesz space of continuous real-valued functions . A basic result is: For discrete , has iff the cardinal , Rothberger’s bounding number. Consequences and...