Previous Page 5

Displaying 81 – 88 of 88

Showing per page

P-sets and minimal right ideals in ℕ*

W. R. Brian (2015)

Fundamenta Mathematicae

Recall that a P-set is a closed set X such that the intersection of countably many neighborhoods of X is again a neighborhood of X. We show that if 𝔱 = 𝔠 then there is a minimal right ideal of (βℕ,+) that is also a P-set. We also show that the existence of such P-sets implies the existence of P-points; in particular, it is consistent with ZFC that no minimal right ideal is a P-set. As an application of these results, we prove that it is both consistent with and independent of ZFC that the shift...

Pseudocompactness and the cozero part of a frame

Bernhard Banaschewski, Christopher Gilmour (1996)

Commentationes Mathematicae Universitatis Carolinae

A characterization of the cozero elements of a frame, without reference to the reals, is given and is used to obtain a characterization of pseudocompactness also independent of the reals. Applications are made to the congruence frame of a σ -frame and to Alexandroff spaces.

Pseudouniform topologies on C ( X ) given by ideals

Roberto Pichardo-Mendoza, Angel Tamariz-Mascarúa, Humberto Villegas-Rodríguez (2013)

Commentationes Mathematicae Universitatis Carolinae

Given a Tychonoff space X , a base α for an ideal on X is called pseudouniform if any sequence of real-valued continuous functions which converges in the topology of uniform convergence on α converges uniformly to the same limit. This paper focuses on pseudouniform bases for ideals with particular emphasis on the ideal of compact subsets and the ideal of all countable subsets of the ground space.

Currently displaying 81 – 88 of 88

Previous Page 5