On normal lattices and separation and semi-separation of lattices.
The minimum weight of a nowhere first-countable compact space of countable -weight is shown to be , the least cardinal for which the real line can be covered by many nowhere dense sets.
Given a topological space , let and denote, respectively, the Salbany compactification of and the compactification map called the Salbany map of . For every continuous function , there is a continuous function , called the Salbany lift of , satisfying . If a continuous function has a stably compact codomain , then there is a Salbany extension of , not necessarily unique, such that . In this paper, we give a condition on a space such that its Salbany map is open. In particular,...
It is shown that a space is -Weakly Fréchet-Urysohn for iff it is -Weakly Fréchet-Urysohn for arbitrary , where is the -th left power of and for . We also prove that for -compact spaces, -sequentiality and the property of being a -Weakly Fréchet-Urysohn space with , are equivalent; consequently if is -compact and , then is -sequential iff is -sequential (Boldjiev and Malyhin gave, for each -point , an example of a compact space which is -Fréchet-Urysohn and it is...