Connected spaces which are not strongly connected
It is shown that both the free topological group and the free Abelian topological group on a connected locally connected space are locally connected. For the Graev’s modification of the groups and , the corresponding result is more symmetric: the groups and are connected and locally connected if is. However, the free (Abelian) totally bounded group (resp., ) is not locally connected no matter how “good” a space is. The above results imply that every non-trivial continuous homomorphism...
In this paper we introduce a connected topology T on the set ℕ of positive integers whose base consists of all arithmetic progressions connected in Golomb’s topology. It turns out that all arithmetic progressions which are connected in the topology T form a basis for Golomb’s topology. Further we examine connectedness of arithmetic progressions in the division topology T′ on ℕ which was defined by Rizza in 1993. Immediate consequences of these studies are results concerning local connectedness of...
To overcome the somewhat artificial difficulties in classical optimization theory concerning the existence and stability of minimizers, a new setting of constrained optimization problems (called problems with tolerance) is proposed using given proximity structures to define the neighbourhoods of sets. The infimum and the so-called minimizing filter are then defined by means of level sets created by these neighbourhoods, which also reflects the engineering approach to constrained optimization problems....