Continuous extensions: answer to a question of Hanner
We study topological properties of Valdivia compact spaces. We prove in particular that a compact Hausdorff space K is Corson provided each continuous image of K is a Valdivia compactum. This answers a question of M. Valdivia (1997). We also prove that the class of Valdivia compacta is stable with respect to arbitrary products and we give a generalization of the fact that Corson compacta are angelic.
Let be a compact Hausdorff space with a point such that is linearly Lindelöf. Is then first countable at ? What if this is true for every in ? We consider these and some related questions, and obtain partial answers; in particular, we prove that the answer to the second question is “yes” when is, in addition, -monolithic. We also prove that if is compact, Hausdorff, and is strongly discretely Lindelöf, for every in , then is first countable. An example of linearly Lindelöf...
We discuss here several types of convergence of conditional expectations for unbounded closed convex random sets of the form where is a decreasing sequence of sub-σ-algebras and is a sequence of closed convex random sets in a separable Banach space.
We show that, under CH, the corona of a countable ultrametric space is homeomorphic to . As a corollary, we get the same statements for the Higson’s corona of a proper ultrametric space and the space of ends of a countable locally finite group.