Displaying 81 – 100 of 129

Showing per page

On subcompactness and countable subcompactness of metrizable spaces in ZF

Kyriakos Keremedis (2022)

Commentationes Mathematicae Universitatis Carolinae

We show in ZF that: (i) Every subcompact metrizable space is completely metrizable, and every completely metrizable space is countably subcompact. (ii) A metrizable space 𝐗 = ( X , T ) is countably compact if and only if it is countably subcompact relative to T . (iii) For every metrizable space 𝐗 = ( X , T ) , the following are equivalent: (a) 𝐗 is compact; (b) for every open filter of 𝐗 , { F ¯ : F } ; (c) 𝐗 is subcompact relative to T . We also show: (iv) The negation of each of the statements, (a) every countably subcompact metrizable...

Perfect pre-images of cofinally complete metric spaces

Adalberto García-Máynez, Salvador Romaguera (1999)

Commentationes Mathematicae Universitatis Carolinae

We show that a Tychonoff space is the perfect pre-image of a cofinally complete metric space if and only if it is paracompact and cofinally Čech complete. Further properties of these spaces are discussed. In particular, cofinal Čech completeness is preserved both by perfect mappings and by continuous open mappings.

Properties of one-point completions of a noncompact metrizable space

Melvin Henriksen, Ludvík Janoš, Grant R. Woods (2005)

Commentationes Mathematicae Universitatis Carolinae

If a metrizable space X is dense in a metrizable space Y , then Y is called a metric extension of X . If T 1 and T 2 are metric extensions of X and there is a continuous map of T 2 into T 1 keeping X pointwise fixed, we write T 1 T 2 . If X is noncompact and metrizable, then ( ( X ) , ) denotes the set of metric extensions of X , where T 1 and T 2 are identified if T 1 T 2 and T 2 T 1 , i.e., if there is a homeomorphism of T 1 onto T 2 keeping X pointwise fixed. ( ( X ) , ) is a large complicated poset studied extensively by V. Bel’nov [The structure of...

Recent developments in the theory of Borel reducibility

Greg Hjorth, Alexander S. Kechris (2001)

Fundamenta Mathematicae

Let E₀ be the Vitali equivalence relation and E₃ the product of countably many copies of E₀. Two new dichotomy theorems for Borel equivalence relations are proved. First, for any Borel equivalence relation E that is (Borel) reducible to E₃, either E is reducible to E₀ or else E₃ is reducible to E. Second, if E is a Borel equivalence relation induced by a Borel action of a closed subgroup of the infinite symmetric group that admits an invariant metric, then either E is reducible to a countable...

Selections that characterize topological completeness

Jan van Mill, Jan Pelant, Roman Pol (1996)

Fundamenta Mathematicae

We show that the assertions of some fundamental selection theorems for lower-semicontinuous maps with completely metrizable range and metrizable domain actually characterize topological completeness of the target space. We also show that certain natural restrictions on the class of the domains change this situation. The results provide in particular answers to questions asked by Engelking, Heath and Michael [3] and Gutev, Nedev, Pelant and Valov [5].

Currently displaying 81 – 100 of 129